matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheoriestochastisch äquivalente ZV´s
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - stochastisch äquivalente ZV´s
stochastisch äquivalente ZV´s < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stochastisch äquivalente ZV´s: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Mo 14.06.2010
Autor: Kopfkirmes

Hallo allerseits,

sitze an folgende Aufgabe, bei der ich nicht voran komme:

Sei X, Y zwei reele Zufallsvariable mit dem gemeinsamen W-Raum [mm] (\Omega,\mathcal{A},P) [/mm] und P(X=Y)=1. Dann nennt man X und Y stochastisch äquivalent. Zeige, dass X und Y dieselbe Verteilung besitzen.

Angenommen X und Y sind stetige ZV´s. Dann muss man wohl zeigen, dass die Dichten [mm] f^X [/mm] und [mm] f^Y [/mm] identisch sind bzw.
[mm] \integral_{-\infty}^{b}{f^X(x) dx}-\integral_{-\infty}^{b}{f^Y(y) dy}=0 [/mm]

Allerdings komme ich hier nicht drauf, wie ich die Voraussetzung P(X=Y)=1 anwenden soll. Wäre schön wenn jemand einen Tipp/Hinweis für mich hätte.

Gruß Kopfkirmes

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
stochastisch äquivalente ZV´s: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Mo 14.06.2010
Autor: vivo

Hallo,

vorausgesetzt ist ja

[mm]P[X=Y]=P[X(\omega)=Y(\omega)]=1[/mm], dass heißt die ZV's $X$ und $Y$ können sich nur auf Nullmengen (also Teilmengen von [mm] $\Omega$ [/mm] die mit Wahrscheinlichkeit 0 eintreten) unterscheiden.

für alle [mm] $\omega \in \Omega$ [/mm] mit [mm] $P[\{\omega\}]>0$ [/mm] gilt also $X=Y$.

hilft dir dass schon? wie sieht denn jetzt die Wahrscheinlichkeit dafür aus, dass z.B. $X<x$ und dann die dass $Y<x$ ??????

gruß

Bezug
                
Bezug
stochastisch äquivalente ZV´s: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:43 Mo 14.06.2010
Autor: Kopfkirmes

Vielen Dank für den Tipp!

Sei also [mm] k\in\IR [/mm] . [mm] P[X\le{k}]-P[Y\le{k}]=(P[X\le{k}\wedge{X}\not={Y}]+P[X\le{k}\wedge{X}={Y}])-(P[Y\le{k}\wedge{Y}\not={X}]+P[Y\le{k}\wedge{Y}={X}]). [/mm]

Mit der Eigenschaft dass [mm] \{X\not=Y\} [/mm] Nullmengen sind und [mm] \{X\le{k}\wedge{X}={Y}\}=\{Y\le{k}\wedge{Y}={X}\}, [/mm] kommt man auf [mm] P[X\le{k}]-P[Y\le{k}]=0 [/mm] und damit zur der zu zeigende Aussage. So würd ich es zumindest behaupten.

Gruß Kopfkirmes

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]