matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigessupM < inf => supM - e < x
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - supM < inf => supM - e < x
supM < inf => supM - e < x < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

supM < inf => supM - e < x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 Sa 24.10.2009
Autor: ZodiacXP

Aufgabe
Zeige [mm] $\forall \varepsilon [/mm] > 0 [mm] \exists [/mm] x [mm] \in [/mm] M [mm] \subset \IR: supM-\varepsilon [/mm] < x$, wenn $sup M < [mm] \infty$ [/mm]


(sup ist der superior)

Meine Annahme:

$sup M < [mm] \infty \Rightarrow [/mm] sup M = a [mm] \in \IR$ [/mm]
Sei $x := a - [mm] \varepsilon [/mm] + 1$ so gilt:
[mm] $supM-\varepsilon [/mm] < x [mm] \gdw a-\varepsilon [/mm] < a - [mm] \varepsilon [/mm] + 1 [mm] \gdw [/mm] 0 < 1$ womit das x gefunden wäre.

Ist dem wirklich so oder ist das kein Beweis?

        
Bezug
supM < inf => supM - e < x: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Sa 24.10.2009
Autor: rainerS

Hallo!

> Zeige [mm]\forall \varepsilon > 0 \exists x \in M \subset \IR: supM-\varepsilon < x[/mm],
> wenn [mm]sup M < \infty[/mm]
>  
> (sup ist der superior)

Supremum.

>  
> Meine Annahme:
>  
> [mm]sup M < \infty \Rightarrow sup M = a \in \IR[/mm]
>  Sei [mm]x := a - \varepsilon + 1[/mm]
> so gilt:
>  [mm]supM-\varepsilon < x \gdw a-\varepsilon < a - \varepsilon + 1 \gdw 0 < 1[/mm]
> womit das x gefunden wäre.
>  
> Ist dem wirklich so oder ist das kein Beweis?

Das stimmt so nicht, denn es ist nicht gezeigt, dass [mm] $x\in [/mm] M$ ist.

Gegenbeispiel:

[mm] M = (1/2,1) [/mm]

also ein offenes Intervall der Länge 1/2. Es ist offensichtlich [mm] $\sup [/mm] M=1$. In deiner Argumentation wäre also [mm] $x=-\varepsilon \notin [/mm] M$. Du darfst x nicht frei wählen, sondern musst die Definition des Supremums als kleinste obere Schranke von M benutzen.

Viele Grüße
   Rainer


Bezug
                
Bezug
supM < inf => supM - e < x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 Sa 24.10.2009
Autor: ZodiacXP

Danke. Wie sollte man mit der Definition argumentieren?

sup M < [mm] $\infty \Rightarrow$ [/mm] Es gibt eine obere Schranke
Sei x genau diese kleinste obere Schranke folgt
$x - [mm] \varepsilon [/mm] < x$

(Erscheint mir ziemlich komisch.)

Bezug
                        
Bezug
supM < inf => supM - e < x: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Sa 24.10.2009
Autor: rainerS

Hallo!

> Danke. Wie sollte man mit der Definition argumentieren?
>  
> sup M < [mm]\infty \Rightarrow[/mm] Es gibt eine obere Schranke
>  Sei x genau diese kleinste obere Schranke folgt
>  [mm]x - \varepsilon < x[/mm]

Das sollst du zeigen. Mach einen Widerspruchsbeweis! Nimm an, es gebe kein solches x. Also:

Annnahme: Für ein [mm] $\varepsilon [/mm] >0$ gilt: es gibt kein [mm] $x\in [/mm] M$ mit $x > [mm] \sup [/mm] M [mm] -\varepsilon$. [/mm] Mit anderen Worten: alle [mm] $x\in [/mm] M$ sind [mm] $\le \sup [/mm] M [mm] -\varepsilon$. [/mm] Kann dann [mm] $\sup [/mm] M$ die kleinste obere Schranke sein?

Viele Grüße
  Rainer

Bezug
                                
Bezug
supM < inf => supM - e < x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Sa 24.10.2009
Autor: ZodiacXP

Ok stimmt. Das kann garnicht für alle x gelten, da die Menge dann nicht nach oben beschränkt wäre. Finds schwer die Gedanken formal aufzuschreiben.

Sei für alle x: $x [mm] \le [/mm] sup M - [mm] \varepsilon \gdw x+\varepsilon \le [/mm] sup M$, so muss für beliebige [mm] $\varepsilon \in \IR$ [/mm] $supM = [mm] \infty$ [/mm] was ein Widerspruch zur Annahme ist.

Bezug
                                        
Bezug
supM < inf => supM - e < x: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Sa 24.10.2009
Autor: rainerS

Hallo!

> Ok stimmt. Das kann garnicht für alle x gelten, da die
> Menge dann nicht nach oben beschränkt wäre. Finds schwer
> die Gedanken formal aufzuschreiben.
>  
> Sei für alle x: [mm]x \le sup M - \varepsilon \gdw x+\varepsilon \le sup M[/mm],
> so muss für beliebige [mm]\varepsilon \in \IR[/mm] [mm]supM = \infty[/mm]
> was ein Widerspruch zur Annahme ist.

Das stimmt nicht ganz, denn die Annahme war (als Negation der Voraussetzung), dass es ein solches [mm] $\varepsilon$ [/mm] gibt, für das es kein [mm] $x\in [/mm] M$ gibt mit $x > [mm] \sup [/mm] M [mm] -\varepsilon$. [/mm] Dann sind alle $x [mm] \le \sup [/mm] M [mm] -\varepsilon$. [/mm] Damit ist [mm] $\sup M-\varepsilon [/mm] < [mm] \sup [/mm] M$ eine obere Schranke. Das ist ein Widerspruch zur Voraussetzung, dass [mm] $\sup [/mm] M$ die kleinste obere Schranke ist.

Viele Grüße
   Rainer

Bezug
                                                
Bezug
supM < inf => supM - e < x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Sa 24.10.2009
Autor: ZodiacXP

Hammer. Wieso kann mein Kopf so etwas offensichtliches nicht einfach ausspucken? Beschämend.

Jetzt sehe ich wie die Definition verwendet wurde! Es ist furchtbar logisch, aber wie gesagt: Formal hink ich hinterher.

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]