matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrasymmetrische Gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - symmetrische Gruppe
symmetrische Gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

symmetrische Gruppe: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 20:43 Di 07.12.2004
Autor: amir

Ich habe gar nix von diese Aufgabe verstanden, das finde einbisschen schwer für mich. Bitte ,könnte jemand mir helfen die aufgabe zu lösen und bitte mit der komplete ablauf wenn es möglich damit ich besser verstehen .
vielen Dank und mit freudlichen Grüßen.

Aufgabe :

Es sei [mm] S_{n} [/mm] die symmetrische Gruppe von Grade n. Es seien

(1 j)   :=    (j, 2, 3, . . . , j-1, 1, j + 1, . . . , n)  (2 [mm] \le [/mm] j [mm] \le [/mm] n)

die Permutationen aus [mm] S_{n}, [/mm] welche das erste und j- te Element einer n-elementigen geordneten Menge vertauschen.

Zeigen Sie für [mm] n\ge [/mm] ,dass

  
[(1 2), (1 3), . . . , (1 n)] = [mm] S_{n} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
symmetrische Gruppe: Transpositionen
Status: (Antwort) fertig Status 
Datum: 12:31 Mi 08.12.2004
Autor: Gnometech

Hallo!

Zunächst vorneweg: eine Vertauschung zweier Elemente heißt auch "Transposition" bzw. genauer: eine Permutation einer $n$-elementigen Menge heißt Transposition, wenn zwei Elemente vertauscht werden und der Rest fest bleibt.

Zunächst ist die eine Inklusion klar: das Erzeugnis der beschriebenen Transpositionen liegt natürlich in der vollen [mm] $S_n$. [/mm] Du mußt also nur zeigen, dass sich jede Permutation als Produkt von solchen speziellen Transpositionen schreiben läßt.

Für beliebige Elemente $i,j [mm] \in \{ 1, \ldots, n \}$ [/mm] gilt aber doch falls $i [mm] \not= [/mm] 1$ und $j [mm] \not= [/mm] 1$:

$(i [mm] \; [/mm] j) = (1 [mm] \; [/mm] j) [mm] \circ [/mm] (1 [mm] \; [/mm] i) [mm] \circ [/mm] (1 [mm] \; [/mm] j)$

Das heißt man kann jede beliebige Transposition durch die angegebenen darstellen.

Es bleibt also zu zeigen, dass jede beliebige Permutation Produkt von Transpositionen ist. Das geht entweder per Induktion über $n$ relativ leicht oder man zeigt es direkt: ein möglicher Beweis steht im "Fischer: Lineare Algebra".

Vielleicht eine kleine Anekdote dazu: ein Prof. von uns hat zu dieser Aufgabe mal gesagt: "Das kann jedes 5-jährige Kind!" Was er natürlich gemeint hat: jedes 5-jährige Kind versteht die Aussage und kann sie durch Probieren verifizieren - der formale Beweis ist natürlich etwas schwieriger und dem 1. Semester durchaus angemessen. ;-)

Schöne Grüße,

Lars

Bezug
                
Bezug
symmetrische Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:39 Mi 08.12.2004
Autor: amir


ja ich weiß dass ich mit Mathe nix zu tun habe. aber ich versuche ehrlich zu verstehen, vielleicht klappt s irgendwann!!!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]