matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und Geometrietopologische gruppe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - topologische gruppe
topologische gruppe < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

topologische gruppe: tipp
Status: (Frage) beantwortet Status 
Datum: 02:13 Sa 07.01.2012
Autor: clee

Aufgabe
Sei $G$ topologische gruppe (d.h. gruppenverknüpfung und inversenabbildund sind stetig). Zeige:

Eine untergruppe [mm] $\Gamma\subset [/mm] G$ ist diskret [mm] $\gdw$ [/mm] ( für alle folgen [mm] $(T_n)\subset\Gamma$ [/mm] mit [mm] $T_n\to [/mm] Id [mm] \Rightarrow T_n=Id$ [/mm] für groß genuge n. )

[mm] "$\Rightarrow$" [/mm] sollte ja trivial sein.
aber wie mache ich [mm] "$\Leftarrow$"? [/mm] ich denke es geht wohl irgendwie damit, dass die linksmultiplikation stetig ist ... bekomms aber einfach nicht hin.

hin sehr dankbar für alle tipps und hinweise.

lg clee

        
Bezug
topologische gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:03 Sa 07.01.2012
Autor: donquijote


> Sei [mm]G[/mm] topologische gruppe (d.h. gruppenverknüpfung und
> inversenabbildund sind stetig). Zeige:
>  
> Eine untergruppe [mm]\Gamma\subset G[/mm] ist diskret [mm]\gdw[/mm] ( für
> alle folgen [mm](T_n)\subset\Gamma[/mm] mit [mm]T_n\to Id \Rightarrow T_n=Id[/mm]
> für groß genuge n. )
>  "[mm]\Rightarrow[/mm]" sollte ja trivial sein.
>  aber wie mache ich "[mm]\Leftarrow[/mm]"? ich denke es geht wohl
> irgendwie damit, dass die linksmultiplikation stetig ist
> ... bekomms aber einfach nicht hin.
>  
> hin sehr dankbar für alle tipps und hinweise.
>  
> lg clee

Zu einer beliebigen konvergenten Folge [mm] T_n\to [/mm] T betrachtest du die Folge [mm] (T^{-1}*T_n), [/mm] die dann gegen Id konvergiert.

Bezug
                
Bezug
topologische gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:49 Sa 07.01.2012
Autor: felixf

Moin,

> > Sei [mm]G[/mm] topologische gruppe (d.h. gruppenverknüpfung und
> > inversenabbildund sind stetig). Zeige:
>  >  
> > Eine untergruppe [mm]\Gamma\subset G[/mm] ist diskret [mm]\gdw[/mm] ( für
> > alle folgen [mm](T_n)\subset\Gamma[/mm] mit [mm]T_n\to Id \Rightarrow T_n=Id[/mm]
> > für groß genuge n. )
>  >  "[mm]\Rightarrow[/mm]" sollte ja trivial sein.
>  >  aber wie mache ich "[mm]\Leftarrow[/mm]"? ich denke es geht wohl
> > irgendwie damit, dass die linksmultiplikation stetig ist
> > ... bekomms aber einfach nicht hin.
>  >  
> > hin sehr dankbar für alle tipps und hinweise.
>
> Zu einer beliebigen konvergenten Folge [mm]T_n\to[/mm] T betrachtest
> du die Folge [mm](T^{-1}*T_n),[/mm] die dann gegen Id konvergiert.

Braucht man nicht auch noch eine abzaehlbare Umgebungsbasis der Identitaet (oder irgendeines anderen Punktes)? (Sprich $G$ muss das erste Abzaehlbarkeitsaxiom erfuellen?)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]