totale mittlere Krümmung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:44 Sa 18.07.2015 | Autor: | Biensche |
Aufgabe | Sei F(u,v)= ((R+rcos(u))cos(v), (R+r*cos(u))sin(v), rsin(v)) mit u,v [mm] \in [0,2\pi], [/mm] 0<r<R der Rotationstorus.
Berechne die totale mittlere Krümmung als Flächenintegral über die Funktion [mm] (H(u,v))^2 [/mm] , u,v, [mm] \in [/mm] [0, [mm] 2\pi] [/mm] und zwar explizit in Abhängigkeit von R und r.
Welcher ist der kleinstmögliche Wert der totalen mittleren Krümmung. |
Hallo zusammen.
Ich habe bereits die 1. Fundamentalform [mm] (g(u,v)_{ij})_{ij} [/mm] = [mm] \pmat{ r^2 & 0 \\ 0 & (R+rcos(u))2 } [/mm] berechnet, damit ich das Flächenintegal berechnen kann.
Außerdem lautet die Funktion für die mittlere Krümmung H(u,v) = [mm] \bruch{R+2r cos(u)}{2r(R+r*cos(u))} [/mm]
Damit ergibt sich für das Flächenintegral
[mm] \integral{(H(u,v))^2 dA} [/mm] nach Umformen
[mm] \bruch{R^2 \pi}{2r} \integral_{0}^{2 \pi} {\bruch{1}{R+r*cos(u)} du}.
[/mm]
Meine Frage ist nun, wie ich dieses Integral integriere. Denn laut Lösung soll das Integral [mm] \bruch{R^2 \pi}{2r} \integral_{0}^{2 \pi} {\bruch{1}{R+r*cos(u)} du} [/mm] = [mm] \bruch {\pi^2 R^2}{r*\wurzel{R^2-r^2}} [/mm] sein.
Doch wenn ich das Integral integiere, komme ich auf 0.
[mm] \bruch{R^2 \pi}{2r} \integral_{0}^{2 \pi} {\bruch{1}{R+r*cos(u)} du} [/mm] = [mm] \bruch{R^2 \pi}{2r} [log(2rR+2r^2*cos(u))* \bruch {1}{2r^2 sin(u)}] _{0}^{2\pi} [/mm] = 0
Danke schon mal für eure Hilfe
Biensche.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:22 Di 21.07.2015 | Autor: | leduart |
Hallo
die zu integrierende fkt ist fue R>r immer positiv, also kann das integral nicht 0 sein. wie kommst du auf die eigenartige Loesung, hast du sie mal differenziert?
Gruss leduart
|
|
|
|