trigonometrische Polynome < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:24 Di 31.05.2005 | Autor: | Jan_Z |
Hallo,
ich möchte zeigen, dass die trigonometrischen Polynome der Form
[mm] t(x)=\bruch{a_{0}}{2}+\summe_{j=1}^{n}a_{j}cos(jx)+b_{j}sin(jx) [/mm] mit [mm] a_{j},b_{j}\in\IR [/mm] einen (2n+1)-dimensionalen Vektorraum bilden. Dass es sich hierbei um einen Vektorraum handelt und z.B. sin(kx), cos(jx) für [mm] 1\le k\le [/mm] n, [mm] 0\le j\le [/mm] n ein Erzeugendensystem ist, ist ja klar, aber wie zeige ich die lineare Unabhängigkeit? Vieleicht durch Angabe eines Isomorphismus in den Vektorraum der Polynome? Würd mich freuen, wenn mir jemand einen Tipp geben könnte. Vielen Dank schonmal!
Jan
|
|
|
|
Hallo Jan!
Die vielleicht einfachste Methode zu zeigen, dass dieses Erzeugendensystem eine Basis ist, ist zu zeigen, dass die einzelnen Vektoren orthogonal zueinander sind bzgl des Skalarproduktes [mm] $\langle f;g\rangle :=\int\limits_0^{2\pi}f(x)g(x)dx$...
[/mm]
Gruß, banachella
|
|
|
|