matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisÜber IC Gleichung lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Über IC Gleichung lösen
Über IC Gleichung lösen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Über IC Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 So 15.07.2012
Autor: drossel

Hallo, ich bekomme es irgentwie nicht vernünftig hin, Gleichung zu lösen über [mm] \IK=\IC [/mm] o.O. Ich will haben [mm] x^2+x+1=0 [/mm] , welche keine reellen Nullstellen hat und habe mit der p-g-Formel ausgerechnet
: [mm] x_1=-\frac{1}{2}+\frac{\wurzel{3}}{2}i [/mm] und [mm] x_2=-\frac{1}{2}-\frac{\wurzel{3}}{2}i [/mm] , falls ich mich nicht verrechnet habe. Wolframalpha gibt mir als komplexe Nullstellen [mm] (-1)^{\frac{2}{3}} [/mm] und [mm] -(-1)^{\frac{1}{3}} [/mm]  an, aber irgentwie sehe ich nicht den Zusammenhang zwischen das, was ich ausgerechnet habe.
Wäre sehr dankbar, wenn mir da jemand weiterhelfen könnte.
Lg

        
Bezug
Über IC Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 So 15.07.2012
Autor: schachuzipus

Hallo drossel,



> Hallo, ich bekomme es irgentwie nicht vernünftig hin,
> Gleichung zu lösen über [mm]\IK=\IC[/mm] o.O. Ich will haben
> [mm]x^2+x+1=0[/mm] , welche keine reellen Nullstellen hat und habe
> mit der p-g-Formel ausgerechnet
> : [mm]x_1=-\frac{1}{2}+\frac{\wurzel{3}}{2}i[/mm] und
> [mm]x_2=-\frac{1}{2}-\frac{\wurzel{3}}{2}i[/mm] , falls ich mich
> nicht verrechnet habe.

Das hast du richtig gerechnet!

> Wolframalpha gibt mir als komplexe
> Nullstellen [mm](-1)^{\frac{2}{3}}[/mm] und [mm]-(-1)^{\frac{1}{3}}[/mm]  an,
> aber irgentwie sehe ich nicht den Zusammenhang zwischen
> das, was ich ausgerechnet habe.

Das ist ja mal ne blöde Darstellung.

Wenn du [mm] $-1=e^{\pi i}$ [/mm] benutzt, kannst du das Ergebnis von Wolfram in deines umrechnen.

*Ich* bevorzuge deine Darstellung mit Real- und Imaginärteil.

>  Wäre sehr dankbar, wenn mir da jemand weiterhelfen
> könnte.
>  Lg

Gruß

schachuzipus


Bezug
                
Bezug
Über IC Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 So 15.07.2012
Autor: drossel

danke :), das ist dann ja schonmal beruhigend.
Hmm ich wollte auch erst die Nullstellen in die Form [mm] z=re^{i*\phi} [/mm] bringen und habe berechnet, zB für [mm] x_1, [/mm] dass [mm] x_1=-\frac{1}{2}+\frac{\wurzel{3}}{2}i [/mm] und auch Betrag 1 hat (den Radius r) und danach verglichen [mm] -\frac{1}{2}+\frac{\wurzel{3}}{2}i =cos(\phi)+isin(\phi) [/mm]
also aus [mm] cos(\phi)=-\frac{1}{2} [/mm] bekomme ich [mm] \phi=\frac{2*\pi}{3} [/mm]
aber auch wegen [mm] \frac{\wurzel{3}}{2}=sin(\phi) [/mm] bekomme ich [mm] \phi=\frac{\pi}{3} [/mm] das kann soch nicht sein oder? da muss doch dann beidemale [mm] \frac{2*\pi}{3} [/mm] rauskommen oder? Und ich frage mich, wie ich das in der Klausur ausrechnen soll mit den Werten von arcsin, arccos, wenn ich kein Wolframalpha zu Verfügung habe =( vor allem wenn ich mir den Graphen anschaue, dann weiss ich jetzt schon, dass ich das ohne Rechner nicht ausrechnen kann. Lg


Bezug
                        
Bezug
Über IC Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 So 15.07.2012
Autor: Valerie20

Hi!

> danke :), das ist dann ja schonmal beruhigend.
>  Hmm ich wollte auch erst die Nullstellen in die Form
> [mm]z=re^{i*\phi}[/mm] bringen und habe berechnet, zB für [mm]x_1,[/mm] dass
> [mm]x_1=-\frac{1}{2}+\frac{\wurzel{3}}{2}i[/mm] und auch Betrag 1

[ok]


Den Winkel bekommst du über die Betrachtung des Tangens.
Stelle dir deine komplexe Zahl mal in der komplexen Zahlenebene vor.

[mm]tan(\phi)=\frac{y}{x}=\[\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} =-\sqrt{3}[/mm]

[mm][/mm]

Nun musst du allerdings noch [mm] $\pi$ [/mm] dazuaddieren, da dein Realteil negativ ist. Warum das so ist, kannst du hier nachlesen:

[]http://de.wikipedia.org/wiki/Komplexe_Zahl

Also:

[mm]\phi=arctan({-\sqrt{3}})+\red{\pi}=\frac{\pi}{3}+\red{\pi}=\frac{2}{3}\pi[/mm]

Valerie


Bezug
                                
Bezug
Über IC Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:00 Mo 16.07.2012
Autor: drossel

ah achso okay, dann habe ich mir nurnoch ein paar Werte vom arctan zu merken und das, was da noch bei Wikipedia steht, wie das mit dem hinzuaaddieren ist. Mit dem arctan finde ich angenehmer danke! Habe noch eine letzte Frage: Gibt es irgendeine Möglichkeit, wie man sich so Werte vom arctan (vll auch vom arccos, arcsin) merken kann,  bzw. wie man da irgentwelche Werte ausrechnet, wenn man keinen Rechner zur Hand nehmen darf?

Bezug
                                        
Bezug
Über IC Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:41 Mo 16.07.2012
Autor: angela.h.b.

Hallo,

Du solltest genau wissen, wie die Sinusfunktion aussieht.
Wo sind ihre Nullstellen, wie ist ihre Symmetrie.
Dann solltest Du die Werte des sin für x=0°, 30°, 45°, 60°, 90° wissen.
Mit diesem Wissen kennst Du dann auch den arcsin von einigen gern genommenen Werte.

Damit bekommst auch, ohne Dir zusätzlich was zu merken, die Werte für sin(-x), sin(90°+x), sin(180°+x) und natürlich sin(360°+x). (Ich guck' dann immer auf einer selbstgemalten Skizze.)

Du solltest wissen, wie die cos-Funktion verläuft, ihre Symmetrieeigenschaften kennen und wissen, wie sie aus der sin-Funktion hervorgeht.
Damit kennst Du dann auch die Werte des cos für x=0°, 30°, 45°, 60°, 90° und kannst Dir mit den Eigenschaften des cos noch weitere erobern.

Wenn Du das weißt, weißt Du auch, was tan(x) für x=0°, 30°, 45°, 60°, 90° ist, und damit kennst Du auch den arctan einiger typischer Werte.

Für alles, was darüberhinausgeht, wirst Du in der Klausur die benötigten Informationen bekommen, entweder mit einer kl. Tabelle, oder indem die benötigten Funktionwerte als Anhang zur Aufgabenstellung mitgeteilt werden.  sin(75°) mußt Du nicht im Kopf haben. Du solltest aber (Skizze der Funktion) feststellen können, ob der Wert pos. oder neg. ist.

LG Angela







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]