matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenumkehrabbildung eines diffeom.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - umkehrabbildung eines diffeom.
umkehrabbildung eines diffeom. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

umkehrabbildung eines diffeom.: tipp
Status: (Frage) beantwortet Status 
Datum: 14:46 Sa 24.01.2009
Autor: eumel

Aufgabe
f(x,y,z)=(x,x+y,x-z-y) ist ein diffeomorphismus.

hallo zusammen,
also dass f ein diffeo ist, ist ja klar, da f linear ist und vollen rang hat...

nur wie ist [mm] f^{-1}(x,y,z) [/mm] definiert??? hab echt gerad voll die sperre....

und wenn man generell zeigen will, dass ne abbildung ein diffeomorphismus ist, kann man da auch über die jakobi-matrix gehen und sagen, wenn die in jedem punkt ungleich 0 ist, ist die auch invertierbar und [mm] f^{-1}' [/mm] existiert? also wenn [mm] det(f^{-1}') \not= [/mm] 0 für alle (x,y,z)

danke und lg
eumel

        
Bezug
umkehrabbildung eines diffeom.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Sa 24.01.2009
Autor: SEcki


> nur wie ist [mm]f^{-1}(x,y,z)[/mm] definiert??? hab echt gerad voll
> die sperre....

Da die Abbildung linear ist, musst zu einer linearen Abbildung die Inverse bilden. Also das Inverse einer Matrix berechnen - schau mal in Richtung lineare Algebra!

> und wenn man generell zeigen will, dass ne abbildung ein
> diffeomorphismus ist, kann man da auch über die
> jakobi-matrix gehen und sagen, wenn die in jedem punkt
> ungleich 0 ist, ist die auch invertierbar und [mm]f^{-1}'[/mm]
> existiert? also wenn [mm]det(f^{-1}') \not=[/mm] 0 für alle (x,y,z)

Nein, dann ist es bloß ein lokare Diffeomorphismus - dieser muss weder surjektiv, noch injektiv sein im Allgemeinen! zB ist die Expontentialfunktion im Komplexen weder injetiv noch surjektiv (die 0 wird ausgelassen), aber überall hat das Differentail vollen Rang!

SEcki

Bezug
                
Bezug
umkehrabbildung eines diffeom.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:04 Sa 24.01.2009
Autor: eumel

ja stimmt, hab vergessen, dass [mm] f(x,y,z)=(x,x+y,x-z-y)=\pmat{1&0&0\\1&1&0\\1&-1&-1}(x,y,z)^T [/mm] ist... xD

danke ^^
lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]