matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieunabhängige Z.v. E(X) Var(X)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - unabhängige Z.v. E(X) Var(X)
unabhängige Z.v. E(X) Var(X) < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unabhängige Z.v. E(X) Var(X): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Do 15.01.2009
Autor: Nataliee

Aufgabe
[mm] Y_0,...,Y_n [/mm] seien unabhängige Zufallsvariable mit [mm] E(Y_i)=0,Var(Y_i)=\sigma^2 \in (0,\infty). [/mm] Zudem seien a und b [mm] \in \IR [/mm] fest. Die Zufallsvariable [mm] X_1, ...,X_n [/mm] seien für i=1,..n wie folgt definiert:

[mm] X_i=\begin{cases} aY_i-bY_{i-1}, & \mbox{falls} i \mbox{ gerade} \\ aY_i+bY_{i-1}, & \mbox{sonst.} \end{cases} [/mm]

a)Zeigen Sie, dass [mm] Var(X_i)=(a^2+b^2)\sigma^2 [/mm] für alle i gilt.
b)Bestimmen Sie die Kovarianz [mm] Cov(X_i,X_j) [/mm] für i<j.
c)Zeigen Sie:
[mm] \limes_{n\rightarrow\infty}P(|\bruch{1}{n}\summe_{i=1}^{n}X_i|\ge \epsilon)=0 [/mm] , [mm] \forall \epsilon [/mm] >0.

Hallo zusammen,
verstehe zunächst einmal nicht wie man a) lösen kann vielleicht habt ihr ja ein Tipp für mich.

a) Zunächst soll wohl der Erwartungswert von X berechnet werden um auf Varianz von X zu kommen.
$ \ [mm] E(X_i)\ =\bruch{1}{2} \cdot{}(aY_i-bY_{i-1})+\bruch{1}{2}\cdot{}(aY_i+bY_{i-1}) [/mm] $
[mm] =\bruch{1}{2} \cdot{}(aY_i-bY_{i-1}+aY_i+bY_{i-1})=aY_i [/mm]

und wenn ich nun das Verschiebunggesetz nutze
$ [mm] Var(X_i)=E(X^2)-E(X)^2= aY_i-a^2Y_i^2 [/mm] $
ihr seht irgendwas ist Falsch allein b ist schon weggefallen.

Was meint ihr?

        
Bezug
unabhängige Z.v. E(X) Var(X): Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Do 15.01.2009
Autor: blascowitz

Sich erstmal den Erwartungswert ausrechnen ist gut, weil den brauch man hinterher noch.
> [mm]Y_0,...,Y_n[/mm] seien unabhängige Zufallsvariable mit
> [mm]E(Y_i)=0,Var(Y_i)=\sigma^2 \in (0,\infty).[/mm] Zudem seien a
> und b [mm]\in \IR[/mm] fest. Die Zufallsvariable [mm]X_1, ...,X_n[/mm] seien
> für i=1,..n wie folgt definiert:
>  
> [mm]X_i=\begin{cases} aY_i-bY_{i-1}, & \mbox{falls} i \mbox{ gerade} \\ aY_i+bY_{i-1}, & \mbox{sonst.} \end{cases}[/mm]
>  
> a)Zeigen Sie, dass [mm]Var(X_i)=(a^2+b^2)\sigma^2[/mm] für alle i
> gilt.
>  b)Bestimmen Sie die Kovarianz [mm]Cov(X_i,X_j)[/mm] für i<j.
>  c)Zeigen Sie:
>  
> [mm]\limes_{n\rightarrow\infty}P(|\bruch{1}{n}\summe_{i=1}^{n}X_i|\ge \epsilon)=0[/mm]
> , [mm]\forall \epsilon[/mm] >0.
>  Hallo zusammen,
>  verstehe zunächst einmal nicht wie man a) lösen kann
> vielleicht habt ihr ja ein Tipp für mich.
>  
> a) Zunächst soll wohl der Erwartungswert von X berechnet
> werden um auf Varianz von X zu kommen.
>  [mm]\ E(X_i)\ =\bruch{1}{2} \cdot{}(aY_i-bY_{i-1})+\bruch{1}{2}\cdot{}(aY_i+bY_{i-1})[/mm]
>  
> [mm]=\bruch{1}{2} \cdot{}(aY_i-bY_{i-1}+aY_i+bY_{i-1})=aY_i[/mm]
>

Warum denn das. Setzte mal für [mm] X_{i} [/mm] die Definition ein und nutze die Voraussetzung [mm] E(Y_{i})=0. [/mm] Was erhälst du?

> und wenn ich nun das Verschiebunggesetz nutze
>  [mm]Var(X_i)=E(X^2)-E(X)^2= aY_i-a^2Y_i^2[/mm]

Das stimmt hier auch nicht es ist ja nicht notwendigerweise [mm] E(X)=E(X^2). [/mm]

>  ihr seht irgendwas
> ist Falsch allein b ist schon weggefallen.
>  
> Was meint ihr?

Also zu a) da würde ich eine Fallunterscheidung nach $i$ ist gerade und $i$ ist ungerade machen. Also einmal für das eine die Varianz ausrechnen und einmal für das andere.
Dabei muss man beachten, dass die [mm] Y_{0},.........,Y_{n} [/mm] stochastisch unabhängig sind, wodurch [mm] COV(Y_{i},Y_{j})=0 [/mm] für [mm] i\not=j.(Aus [/mm] stochastisch unabhängig folgt unkorreliert, die Umkehrung gilt im allgemeinen nicht) Das braucht man um die Summe zweier Varianzen auseinanderzuziehen, denn allgemein Gilt ja für  einfache Zufallsvariablen [mm] $Z_{i};\ [/mm] i=0....n$: [mm] Var(\summe_{i=0}^{n}Z_{i})=\summe_{i=0}^{n}Var(Z_{i})+2 \summe_{i
Grüße

Bezug
                
Bezug
unabhängige Z.v. E(X) Var(X): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:20 Fr 16.01.2009
Autor: Nataliee

Hallo blascowitz,
> Sich erstmal den Erwartungswert ausrechnen ist gut, weil
> den brauch man hinterher noch.
>  > [mm]Y_0,...,Y_n[/mm] seien unabhängige Zufallsvariable mit

> > [mm]E(Y_i)=0,Var(Y_i)=\sigma^2 \in (0,\infty).[/mm] Zudem seien a
> > und b [mm]\in \IR[/mm] fest. Die Zufallsvariable [mm]X_1, ...,X_n[/mm] seien
> > für i=1,..n wie folgt definiert:
>  >  
> > [mm]X_i=\begin{cases} aY_i-bY_{i-1}, & \mbox{falls} i \mbox{ gerade} \\ aY_i+bY_{i-1}, & \mbox{sonst.} \end{cases}[/mm]
>  
> >  

> > a)Zeigen Sie, dass [mm]Var(X_i)=(a^2+b^2)\sigma^2[/mm] für alle i
> > gilt.
>  >  b)Bestimmen Sie die Kovarianz [mm]Cov(X_i,X_j)[/mm] für i<j.
>  >  c)Zeigen Sie:
>  >  
> >
> [mm]\limes_{n\rightarrow\infty}P(|\bruch{1}{n}\summe_{i=1}^{n}X_i|\ge \epsilon)=0[/mm]
> > , [mm]\forall \epsilon[/mm] >0.

>  >  [mm]\ E(X_i)\ =\bruch{1}{2} \cdot{}(aY_i-bY_{i-1})+\bruch{1}{2}\cdot{}(aY_i+bY_{i-1})[/mm]
> >  

> > [mm]=\bruch{1}{2} \cdot{}(aY_i-bY_{i-1}+aY_i+bY_{i-1})=aY_i[/mm]
>  
> >
> Warum denn das.

------------
[mm] E(X_i)=\bruch{1}{2} \cdot{}(aY_i-bY_{i-1}+aY_i+bY_{i-1}) [/mm]
[mm] =\bruch{1}{2} \cdot{}(aY_i+aY_i+bY_{i-1}-bY_{i-1}) [/mm]
[mm] =\bruch{1}{2} \cdot{}(2aY_i) [/mm]
[mm] =aY_i [/mm]  
------------

> Setzte mal für [mm]X_{i}[/mm] die Definition ein und
> nutze die Voraussetzung [mm]E(Y_{i})=0.[/mm] Was erhälst du?

$ [mm] X_i=\begin{cases} aY_i-bY_{i-1}, & \mbox{falls} i \mbox{ gerade} \\ aY_i+bY_{i-1}, & \mbox{sonst.} \end{cases} [/mm] $

------------
falls i gerade
[mm] E(X_i)=\bruch{1}{2} \cdot{}(aY_i-bY_{i-1}+aY_i+bY_{i-1}) [/mm]
[mm] =\bruch{1}{2} \cdot{}(X_i+aY_i+bY_{i-1}) [/mm]

falls i ungerade
[mm] E(X_i)=\bruch{1}{2} \cdot{}(aY_i-bY_{i-1}+aY_i+bY_{i-1}) [/mm]
[mm] =\bruch{1}{2} \cdot{}(aY_i-bY_{i-1}+X_i) [/mm]
------------
Ich erkenne leider nicht wie ich nun noch $ [mm] E(Y_{i})=0. [/mm] $ nutzen kann.

Schönen Gruß

Bezug
                        
Bezug
unabhängige Z.v. E(X) Var(X): Antwort
Status: (Antwort) fertig Status 
Datum: 09:11 Fr 16.01.2009
Autor: blascowitz

Guten Morgen. Also ich zeig dir das mal für $i$ ist gerade. Dann ist [mm] $X_{i}=aY_{i}-bY_{i-1}$. [/mm] Dann [mm] $E(X_{i})=E(aY_{i}-bY_{i-1})=aE(Y_{i})-bE(Y_{i-1})$ [/mm] Weiter kannst du jetzt machen. Das selbe für $i$ ungerade. Dann die Varianz ausrechnen. Das geht so ähnlich. Wieder stur einsetzen. Und wie bereits gesagt, die Unkorreliertheit nutzen.

Einen schönen Tag

Bezug
                                
Bezug
unabhängige Z.v. E(X) Var(X): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:31 Fr 16.01.2009
Autor: Nataliee

a)
Falls i  gerade dann ist  [mm] X_{i}=aY_{i}-bY_{i-1} [/mm] . Dann
[mm] E(X_{i})=E(aY_{i}-bY_{i-1}) [/mm]
[mm] =aE(Y_{i})-bE(Y_{i-1}) [/mm] , das folgt doch aus der Unabhängigkeit von [mm] Y_i [/mm]

Falls i  ungerade dann ist  [mm] X_{i}=aY_{i}+bY_{i-1} [/mm] . Dann
[mm] E(X_{i})=E(aY_{i}+bY_{i-1}) [/mm]
[mm] =aE(Y_{i})+bE(Y_{i-1}) [/mm]

mit$ [mm] X_i=\begin{cases} aY_i-bY_{i-1}, & \mbox{falls} i \mbox{ gerade} \\ aY_i+bY_{i-1}, & \mbox{sonst.} \end{cases} [/mm] $

[mm] Var(X_i)=\bruch{1}{2}((aY_i-bY_{i-1})-(aE(Y_{i})-bE(Y_{i-1})))^2+\bruch{1}{2}((aY_i+bY_{i-1})-(aE(Y_{i})+bE(Y_{i-1})))^2 [/mm]
Hier kann ich doch nicht einfach einsetzen so dass
[mm] =\bruch{1}{2}(X_i-(aE(Y_{i})-bE(Y_{i-1})))^2+\bruch{1}{2}(X_i-(aE(Y_{i})+bE(Y_{i-1})))^2, [/mm] oder?

Bezug
                                        
Bezug
unabhängige Z.v. E(X) Var(X): Antwort
Status: (Antwort) fertig Status 
Datum: 11:12 Fr 16.01.2009
Autor: blascowitz


> a)
>  Falls i  gerade dann ist  [mm]X_{i}=aY_{i}-bY_{i-1}[/mm] . Dann
> [mm]E(X_{i})=E(aY_{i}-bY_{i-1})[/mm]
>  [mm]=aE(Y_{i})-bE(Y_{i-1})[/mm] , das folgt doch aus der
> Unabhängigkeit von [mm]Y_i[/mm]

Das folgt einfach aus der Linearität des Erwartungswertes. Was weißt du nun über [mm] E(Y_{i}) [/mm] und [mm] E(Y_{i-1})? [/mm]

>  
> Falls i  ungerade dann ist  [mm]X_{i}=aY_{i}+bY_{i-1}[/mm] . Dann
> [mm]E(X_{i})=E(aY_{i}+bY_{i-1})[/mm]
>  [mm]=aE(Y_{i})+bE(Y_{i-1})[/mm]
>
> mit[mm] X_i=\begin{cases} aY_i-bY_{i-1}, & \mbox{falls} i \mbox{ gerade} \\ aY_i+bY_{i-1}, & \mbox{sonst.} \end{cases}[/mm]
>  
> [mm]Var(X_i)=\bruch{1}{2}((aY_i-bY_{i-1})-(aE(Y_{i})-bE(Y_{i-1})))^2+\bruch{1}{2}((aY_i+bY_{i-1})-(aE(Y_{i})+bE(Y_{i-1})))^2[/mm]
>  Hier kann ich doch nicht einfach einsetzen so dass
> [mm]=\bruch{1}{2}(X_i-(aE(Y_{i})-bE(Y_{i-1})))^2+\bruch{1}{2}(X_i-(aE(Y_{i})+bE(Y_{i-1})))^2,[/mm]
> oder?

Setzt für die [mm] V(X_{i}) [/mm] erstmal die Definition von [mm] X_{i} [/mm] ein und dann schreibe mal die Varianz der Summe von zwei Zufallsvariablen als Summe der Varianzen von zwei Zufallsvariablen(Formel hab ich im ersten Post geschrieben)


Bezug
                                                
Bezug
unabhängige Z.v. E(X) Var(X): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Fr 16.01.2009
Autor: Nataliee


> > a)
>  >  Falls i  gerade dann ist  [mm]X_{i}=aY_{i}-bY_{i-1}[/mm] . Dann
> > [mm]E(X_{i})=E(aY_{i}-bY_{i-1})[/mm]
>  >  [mm]=aE(Y_{i})-bE(Y_{i-1})[/mm] , das folgt doch aus der
> > Unabhängigkeit von [mm]Y_i[/mm]

Ohh, hatte mich vertan.

> Was weißt du nun über [mm]E(Y_{i})[/mm] und [mm][mm] E(Y_{i-1})? [/mm]

Ohh, natürlich ich hab mich so auf's rechnen konzentriert :).  
[mm] E(Y_{i})=0 [/mm] und [mm] E(Y_{i-1})=0 [/mm] da  ja schon in der Aufgabenstellung [mm] E(Y_i)=0 [/mm] gegebn ist? Das ist verwirrend ich muß etwas falsch verstechen den [mm] E(X_{i}) [/mm] kann ja nicht 0 sein oder?


Aber ich kann ja zunächst mit [mm] E(X_i)=aE(Y_{i})-bE(Y_{i-1}) [/mm] weiterrechnen

> > Falls i  ungerade dann ist  [mm]X_{i}=aY_{i}+bY_{i-1}[/mm] . Dann
> > [mm]E(X_{i})=E(aY_{i}+bY_{i-1})[/mm]
>  >  [mm]=aE(Y_{i})+bE(Y_{i-1})[/mm]
> >
> > mit[mm] X_i=\begin{cases} aY_i-bY_{i-1}, & \mbox{falls} i \mbox{ gerade} \\ aY_i+bY_{i-1}, & \mbox{sonst.} \end{cases}[/mm]
>  
> >  

> >
> [mm]Var(X_i)=\bruch{1}{2}((aY_i-bY_{i-1})-(aE(Y_{i})-bE(Y_{i-1})))^2+\bruch{1}{2}((aY_i+bY_{i-1})-(aE(Y_{i})+bE(Y_{i-1})))^2[/mm]
>  >  Hier kann ich doch nicht einfach einsetzen so dass
> >
> [mm]=\bruch{1}{2}(X_i-(aE(Y_{i})-bE(Y_{i-1})))^2+\bruch{1}{2}(X_i-(aE(Y_{i})+bE(Y_{i-1})))^2,[/mm]
> > oder?
> Setzt für die [mm]V(X_{i})[/mm] erstmal die Definition von [mm]X_{i}[/mm] ein
> und dann schreibe mal die Varianz der Summe von zwei
> Zufallsvariablen als Summe der Varianzen von zwei
> Zufallsvariablen(Formel hab ich im ersten Post
> geschrieben)


[mm] Var(X_i)=\bruch{1}{2}((aY_i-bY_{i-1})-E(X_i))^2+\bruch{1}{2}((aY_i+bY_{i-1})-E(X_i))^2 [/mm]
$ [mm] Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(X_{i})+2 \summe_{i}\cdot COV(X_{i},Y_{i}) [/mm] $
Meinst du es so?



Bezug
                                                        
Bezug
unabhängige Z.v. E(X) Var(X): Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Fr 16.01.2009
Autor: blascowitz


> > > a)
>  >  >  Falls i  gerade dann ist  [mm]X_{i}=aY_{i}-bY_{i-1}[/mm] .
> Dann
> > > [mm]E(X_{i})=E(aY_{i}-bY_{i-1})[/mm]
>  >  >  [mm]=aE(Y_{i})-bE(Y_{i-1})[/mm] , das folgt doch aus der
> > > Unabhängigkeit von [mm]Y_i[/mm]
>  Ohh, hatte mich vertan.
>  > Was weißt du nun über [mm]E(Y_{i})[/mm] und [mm][mm]E(Y_{i-1})?[/mm]

Ohh, natürlich ich hab mich so auf's rechnen konzentriert :).  
> [mm]E(Y_{i})=0[/mm] und [mm]E(Y_{i-1})=0[/mm] da  ja schon in der Aufgabenstellung [mm]E(Y_i)=0[/mm] gegebn ist? Das ist verwirrend ich muß etwas falsch verstechen den [mm]E(X_{i})[/mm] kann ja nicht 0 sein oder?


Was spricht dagegen? I
Aber ich kann ja zunächst mit [mm]E(X_i)=aE(Y_{i})-bE(Y_{i-1})[/mm] weiterrechnen
> > Falls i  ungerade dann ist  [mm]X_{i}=aY_{i}+bY_{i-1}[/mm] . Dann

> > [mm]E(X_{i})=E(aY_{i}+bY_{i-1})[/mm]

>  >  [mm]=aE(Y_{i})+bE(Y_{i-1})[/mm]

> >
> > mit[mm] X_i=\begin{cases} aY_i-bY_{i-1}, & \mbox{falls} i \mbox{ gerade} \\ aY_i+bY_{i-1}, & \mbox{sonst.} \end{cases}[/mm]

>  

> >  

> >
> [mm]Var(X_i)=\bruch{1}{2}((aY_i-bY_{i-1})-(aE(Y_{i})-bE(Y_{i-1})))^2+\bruch{1}{2}((aY_i+bY_{i-1})-(aE(Y_{i})+bE(Y_{i-1})))^2[/mm]

>  >  Hier kann ich doch nicht einfach einsetzen so dass

> >
> [mm]=\bruch{1}{2}(X_i-(aE(Y_{i})-bE(Y_{i-1})))^2+\bruch{1}{2}(X_i-(aE(Y_{i})+bE(Y_{i-1})))^2,[/mm]
> > oder?
> Setzt für die [mm]V(X_{i})[/mm] erstmal die Definition von [mm]X_{i}[/mm] ein
> und dann schreibe mal die Varianz der Summe von zwei
> Zufallsvariablen als Summe der Varianzen von zwei
> Zufallsvariablen(Formel hab ich im ersten Post
> geschrieben)


[mm]Var(X_i)=\bruch{1}{2}((aY_i-bY_{i-1})-E(X_i))^2+\bruch{1}{2}((aY_i+bY_{i-1})-E(X_i))^2[/mm]
[mm]Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(X_{i})+2 \summe_{i}\cdot COV(X_{i},Y_{i})[/mm]
Meinst du es so?

So ungefähr. Rechne mal weiter. Sei [mm] Var(X_{i})=Var(aY_{i}-bY_{i-1})=............ [/mm]
Verwende die Formel für die Summe mit zwei Summanden. Was erhälst du dann?




Bezug
                                                                
Bezug
unabhängige Z.v. E(X) Var(X): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Fr 16.01.2009
Autor: Nataliee

So ungefähr. Rechne mal weiter. Sei [mm]Var(X_{i})=Var(aY_{i}-bY_{i-1})=Var(aY_i)-Var(bY_{i-1})[/mm]
$ [mm] Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(Y_{i})+2 \summe_{i}\cdot COV(Y_{i},Y_{i-1}) [/mm] $
[mm] Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(Y_{i}) [/mm]
Versteh nicht ganz,

Ziel ist doch $ [mm] Var(X_i)=(a^2+b^2)\sigma^2 [/mm] $

Lieben Gruß

Bezug
                                                                        
Bezug
unabhängige Z.v. E(X) Var(X): Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Fr 16.01.2009
Autor: blascowitz


> So ungefähr. Rechne mal weiter. Sei
> [mm]Var(X_{i})=Var(aY_{i}-bY_{i-1})=Var(aY_{i}) + Var(- bY_{i-1})[/mm]

Da oben hat sich ein Fehler eingeschlichen: so stimmts: [mm] Var(aY_{i}) [/mm] + Var(- [mm] bY_{i-1}). [/mm] Man kann das $-$ nicht einfach rausziehen, erstmal so schreiben
Das kann man weiter vereinfachen zu [mm] $a^2Var(Y_{i})+(-b)^2Var(Y_{i-1}) [/mm] $(ziehen konstanten im Quadrat raus)= [mm] a^2\sigma^2+b^2\sigma^2=(a^2+b^2)\sigma^2. [/mm] Jetzt das selbe nochmal für Den ungerade fall.

> [mm]Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(Y_{i})+2 \summe_{i}\cdot COV(Y_{i},Y_{i-1})[/mm]

Das stimmt sicherlich nicht: Richig wäre [mm] erstmal:Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(X_{i})+2 \summe_{i
>  
>  [mm]Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(Y_{i})[/mm]

Stimmt so auch niciht

>  Versteh nicht ganz,
>  
> Ziel ist doch [mm]Var(X_i)=(a^2+b^2)\sigma^2[/mm]
>  
> Lieben Gruß

Lieben Gruß zurück

Bezug
                                                                                
Bezug
unabhängige Z.v. E(X) Var(X): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Fr 16.01.2009
Autor: Nataliee

Abend blascowitz,
du schreibst
$ [mm] erstmal:Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(X_{i})+2 \summe_{i


ich fasse mal zusammen

Für den gerdaden Fall
[mm] E(X_{i})=E(aY_{i}-bY_{i-1}) =aE(Y_{i})-bE(Y_{i-1}) [/mm]
und für den ungeraden Fall
[mm] E(X_{i})=E(aY_{i}+bY_{i-1}) =aE(Y_{i})+bE(Y_{i-1}). [/mm]

somit folgt für den geraden Fall
[mm] Var(X_i)=$ Var(X_i)=\bruch{1}{2}((aY_i-bY_{i-1})-(aE(Y_{i})-bE(Y_{i-1})))^2 [/mm] $
[mm] =\bruch{1}{2}((aY_i-bY_{i-1})-E(X_i))^2 [/mm]

<=>$ [mm] Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(X_{i})+2 \summe_{i*

[mm] =\summe_{i=0}^{n}Var(X_{i}) [/mm]

[mm] <=>Var(X_i)=Var(aY_i-bY_{i-1}) [/mm]

= [mm] a^2Var(Y_{i})+(-b)^2Var(Y_{i-1}) [/mm]
   [mm] a^2\sigma^2+b^2\sigma^2 [/mm]
[mm] =(a^2+b^2)\sigma^2. [/mm]

Kannst du mir vielleicht * erklären. Also wie man auf die Zeile kommt.

und den ungeraden Fall
$ [mm] Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(Y_{i})+2 \summe_{i}\cdot COV(Y_{i},Y_{i-1}) [/mm] $

Wieso ist hier im Gegensatz zu  *  [mm] Y_i [/mm] in der Kovarianz?

Lieben Gruß





Bezug
                                                                                        
Bezug
unabhängige Z.v. E(X) Var(X): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:19 Sa 17.01.2009
Autor: Nataliee

HAbe es zusammenfassen können siehe oben.

Bezug
                                                                                        
Bezug
unabhängige Z.v. E(X) Var(X): Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 So 18.01.2009
Autor: blascowitz


> Abend blascowitz,
>  du schreibst
> [mm]erstmal:Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(X_{i})+2 \summe_{i
>  
>
>
> ich fasse mal zusammen
>  
> Für den gerdaden Fall
>   [mm]E(X_{i})=E(aY_{i}-bY_{i-1}) =aE(Y_{i})-bE(Y_{i-1})[/mm]
>  und
> für den ungeraden Fall
>  [mm]E(X_{i})=E(aY_{i}+bY_{i-1}) =aE(Y_{i})+bE(Y_{i-1}).[/mm]
>  

Was weißt du denn nun über [mm] E(Y_{i}) [/mm] und [mm] E(Y_{i-1}). [/mm] Guck mal in die Voraussetzung. [mm] E(Y_{i})=..... [/mm] ?

> somit folgt für den geraden Fall
> [mm]Var(X_i)=[/mm]
> [mm]Var(X_i)=\bruch{1}{2}((aY_i-bY_{i-1})-(aE(Y_{i})-bE(Y_{i-1})))^2[/mm]
>  [mm]=\bruch{1}{2}((aY_i-bY_{i-1})-E(X_i))^2[/mm]
>  

Erste Frage: Wo kommen die [mm] \bruch{1}{2} [/mm] her?. Die Varianz einer einfachen Zufallsvariablen $A$ ist: [mm] Var(A)=[red]$E(A-E(A))^2$[/red]. [/mm]


> <=>[mm] Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(X_{i})+2 \summe_{i
> , *
>  [mm]=\summe_{i=0}^{n}Var(X_{i})[/mm]
>  
> [mm]Var(X_i)=Var(aY_i-bY_{i-1})[/mm]
>  
> = [mm]a^2Var(Y_{i})+(-b)^2Var(Y_{i-1})[/mm]
> [mm]a^2\sigma^2+b^2\sigma^2[/mm]
>  [mm]=(a^2+b^2)\sigma^2.[/mm]
>

Das stimmt so. Jetzt dasselbe für den anderen Fall machen.


> Kannst du mir vielleicht * erklären. Also wie man auf die
> Zeile kommt.

Na diese Zeile ist eine Verallgemeinerung von [mm] $Var(C+D)=Var(C)+Var(D)+2\cdot [/mm] COV(C,D)$, das folgt aus der Definition der Varianz(siehe oben). Per Vollständiger Induktion lässt sich dass dann verallgemeinern.

>  
> und den ungeraden Fall
> [mm]Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(Y_{i})+2 \summe_{i}\cdot COV(Y_{i},Y_{i-1})[/mm]
>  
> Wieso ist hier im Gegensatz zu  *  [mm]Y_i[/mm] in der Kovarianz?

Die Zeile ist falsch, sollte ich das geschrieben haben, entschuldige ich mich für den Fehler.

>  
> Lieben Gruß

Danke gleichfalls

>  
>
>
>
>  


Bezug
                                                                                                
Bezug
unabhängige Z.v. E(X) Var(X): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Mo 19.01.2009
Autor: Nataliee

Hallo blascowitz,
>>$ [mm] =\bruch{1}{2}((aY_i-bY_{i-1})-E(X_i))^2 [/mm] $  

>Erste Frage: Wo kommen die $ [mm] \bruch{1}{2} [/mm] $ her?. Die Varianz einer >einfachen Zufallsvariablen A ist: Var(A)=$ [mm] E(A-E(A))^2 [/mm] $.

Wie in
[]http://de.wikipedia.org/wiki/Varianz
Da im geraden Fall die Wahrscheinlichkeit für das Ereignis [mm] \bruch{1}{2} [/mm] ist.

a)Für den geraden Fall

>   $ [mm] E(X_{i})=E(aY_{i}-bY_{i-1}) =aE(Y_{i})-bE(Y_{i-1}) [/mm] $

> somit folgt für den geraden Fall
> $ [mm] Var(X_i)= [/mm] $
> $ [mm] Var(X_i)=\bruch{1}{2}((aY_i-bY_{i-1})-(aE(Y_{i})-bE(Y_{i-1})))^2 [/mm] $
>  $ [mm] =\bruch{1}{2}((aY_i-bY_{i-1})-E(X_i))^2 [/mm] $
> <=>$ [mm] Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(X_{i})+2 \summe_{i
>  $ [mm] =\summe_{i=0}^{n}Var(X_{i}) [/mm] $
>  
> $ [mm] Var(X_i)=Var(aY_i-bY_{i-1}) [/mm] $
>  
> = $ [mm] a^2Var(Y_{i})+(-b)^2Var(Y_{i-1}) [/mm] $
> $ [mm] a^2\sigma^2+b^2\sigma^2 [/mm] $
>  $ [mm] =(a^2+b^2)\sigma^2. [/mm] $


> für den ungeraden Fall
>  $ [mm] E(X_{i})=E(aY_{i}+bY_{i-1}) =aE(Y_{i})+bE(Y_{i-1}). [/mm] $

somit folgt für den ungeraden Fall
$ [mm] Var(X_i)=\bruch{1}{2}((aY_i+bY_{i-1})-(aE(Y_{i})+bE(Y_{i-1})))^2 [/mm] $
  $ [mm] =\bruch{1}{2}((aY_i+bY_{i-1})+E(X_i))^2 [/mm] $
<=>$ [mm] Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(X_{i})+2 \summe_{i   $ [mm] =\summe_{i=0}^{n}Var(X_{i}) [/mm] $
  
$ [mm] Var(X_i)=Var(aY_i-bY_{i-1}) [/mm] $
  
= $ [mm] a^2Var(Y_{i})+(-b)^2Var(Y_{i-1}) [/mm] $
$ [mm] a^2\sigma^2+b^2\sigma^2 [/mm] $
$ [mm] =(a^2+b^2)\sigma^2. [/mm] $

b)Bestimmen Sie die Kovarianz $ [mm] Cov(X_i,X_j) [/mm] $ für i<j.
Mit $ [mm] Var(X_i)=(a^2+b^2)\sigma^2 [/mm] $.
    [mm] \operatorname{Cov}(X_i, X_j) [/mm] := [mm] \operatorname E\bigl((X_i [/mm] - [mm] \operatorname E(X_i))(X_j [/mm] - [mm] \operatorname E(X_j))\bigr) [/mm]

=>$ [mm] Var(C+D)=Var(C)+Var(D)+2\cdot [/mm] COV(C,D) $
Das ist wohl einfaches einsetzen.
Das reicht mir erstmal danke für die Hilfe.

Bezug
                                                                                                        
Bezug
unabhängige Z.v. E(X) Var(X): Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Di 20.01.2009
Autor: blascowitz

Guten Morgen, also ich hab den Fall da nicht gefunden.(Das mag auch an der Frühen Uhrzeit liegen^^). Wie auch immer, vergiss das mal mit den [mm] \bruch{1}{2}. [/mm]
Fassen wir mal Zusammen, was wir schon haben(und ich würde dich bitten, deine Rechnungen ohne das ganze zitierte hier mal reinzustellen, danke schön^^).
Also wir wissen nu schon das [mm] $Var(X_{i})=(a^2+b^2)\sigma^2$ [/mm] ist. Nu gehts an die Kovarianz. Was weißt du über die Kovarianz stochastisch unabhängiger Zufallsvariablen?

Bezug
                                                                                                                
Bezug
unabhängige Z.v. E(X) Var(X): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:43 Di 20.01.2009
Autor: Nataliee

Morgen,
wenn du dir da sicher bist dann glaub ich dir mal. Hier nochmal ohne Kommentare und ohne 1/2:
a)Für den geraden Fall
[mm] E(X_{i})=E(aY_{i}-bY_{i-1}) =aE(Y_{i})-bE(Y_{i-1}) [/mm]

somit folgt für den geraden Fall

$ [mm] Var(X_i)=((aY_i-bY_{i-1})-(aE(Y_{i})-bE(Y_{i-1})))^2 [/mm] $$ [mm] =((aY_i-bY_{i-1})-E(X_i))^2 [/mm] $
<=>$ [mm] Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(X_{i})+2 \summe_{i <=>$ [mm] Var(X_i)=Var(aY_i-bY_{i-1}) [/mm] $
  
= $ [mm] a^2Var(Y_{i})+(-b)^2Var(Y_{i-1}) [/mm] $=$ [mm] a^2\sigma^2+b^2\sigma^2 [/mm] $$ [mm] =(a^2+b^2)\sigma^2. [/mm] $


für den ungeraden Fall
  $ [mm] E(X_{i})=E(aY_{i}+bY_{i-1}) =aE(Y_{i})+bE(Y_{i-1}). [/mm] $

somit folgt für den ungeraden Fall
$ [mm] Var(X_i)=((aY_i+bY_{i-1})-(aE(Y_{i})+bE(Y_{i-1})))^2 [/mm] $$ [mm] =((aY_i+bY_{i-1})+E(X_i))^2 [/mm] $
<=>$ [mm] Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(X_{i})+2 \summe_{i   
<=>$ [mm] Var(X_i)=Var(aY_i-bY_{i-1}) [/mm] $= $ [mm] a^2Var(Y_{i})+(-b)^2Var(Y_{i-1}) [/mm] $=$ [mm] a^2\sigma^2+b^2\sigma^2 [/mm] $$ [mm] =(a^2+b^2)\sigma^2. [/mm] $

b)Bestimmen Sie die Kovarianz  [mm] Cov(X_i,X_j) [/mm]  für i<j.
Wir wissen  [mm] COV(X_{i},X_{j})=0 [/mm]  für  [mm] i\not=j. [/mm] für stochastisch unabhägige Zufallsvariablen [mm] X_1,...,X_n. [/mm]

Aber hier sind nur $ [mm] Y_0,...,Y_n [/mm] $  unabhängige Zufallsvariable.

Weiterhin wissen wir.
$ [mm] Var(X_i)=(a^2+b^2)\sigma^2 [/mm] $.
$ [mm] \operatorname{Cov}(X_i, X_j) [/mm] :=  [mm] \operatorname E\bigl((X_i [/mm] $ - $ [mm] \operatorname E(X_i))(X_j [/mm] $ - $ [mm] \operatorname E(X_j))\bigr) [/mm] $
$ [mm] Var(C+D)=Var(C)+Var(D)+2\cdot [/mm] COV(C,D) $



Bezug
                                                                                                                        
Bezug
unabhängige Z.v. E(X) Var(X): Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Di 20.01.2009
Autor: blascowitz


> Morgen,
>  wenn du dir da sicher bist dann glaub ich dir mal. Hier
> nochmal ohne Kommentare und ohne 1/2:
>  a)Für den geraden Fall

[mm] $E(X_{i})=E(aY_{i}-bY_{i-1}) =aE(Y_{i})-bE(Y_{i-1}) [/mm] $

>

Jetzt schau mal in die Voraussetzung der Aufgabe, was du [mm] überE(Y_{i}) [/mm] und [mm] E(Y_{i-1}) [/mm] weißt.

> somit folgt für den geraden Fall
>  
> [mm] Var(X_i)= [/mm] E [mm] ((aY_i-bY_{i-1})-(aE(Y_{i})-bE(Y_{i-1})))^2[/mm] [mm] =((aY_i-bY_{i-1})-E(X_i))^2[/mm]

Erstmal die Definition Geradebiegen. [mm] $Var(X_{i})=E(X_{i}-E(X_{i}))^2$ [/mm]

>  
> <=>[mm] Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(X_{i})+2 \summe_{i

Das ist schlichtweg falsch. Warum ist die [mm] Var(X_i)= [/mm] E [mm] ((aY_i-bY_{i-1})-(aE(Y_{i})-bE(Y_{i-1})))^2 \gdw [/mm] die Summe der Varianzen [mm] Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(X_{i})+2 \summe_{i
>  
> <=>[mm] Var(X_i)=Var(aY_i-bY_{i-1})[/mm]
>    
> = [mm]a^2Var(Y_{i})+(-b)^2Var(Y_{i-1}) [/mm]=[mm] a^2\sigma^2+b^2\sigma^2[/mm][mm] =(a^2+b^2)\sigma^2.[/mm]

Das stimmt so.Warum?(Stichwort Unabhängigkeit)

>  
>
> für den ungeraden Fall
>    [mm]E(X_{i})=E(aY_{i}+bY_{i-1}) =aE(Y_{i})+bE(Y_{i-1}).[/mm]
>  
> somit folgt für den ungeraden Fall
>  [mm]Var(X_i)=((aY_i+bY_{i-1})-(aE(Y_{i})+bE(Y_{i-1})))^2[/mm][mm] =((aY_i+bY_{i-1})+E(X_i))^2[/mm]
>  
> <=>[mm] Var(\summe_{i=0}^{n}X_{i})=\summe_{i=0}^{n}Var(X_{i})+2 \summe_{i
>  

siehe oben

>  
> <=>[mm] Var(X_i)=Var(aY_i-bY_{i-1}) [/mm]=
> [mm]a^2Var(Y_{i})+(-b)^2Var(Y_{i-1}) [/mm]=[mm] a^2\sigma^2+b^2\sigma^2[/mm][mm] =(a^2+b^2)\sigma^2.[/mm]
>  
> b)Bestimmen Sie die Kovarianz  [mm]Cov(X_i,X_j)[/mm]  für i<j.
>  Wir wissen  [mm]COV(X_{i},X_{j})=0[/mm]  für  [mm]i\not=j.[/mm] für
> stochastisch unabhägige Zufallsvariablen [mm]X_1,...,X_n.[/mm]
>  
> Aber hier sind nur [mm]Y_0,...,Y_n[/mm]  unabhängige
> Zufallsvariable.

Richtig. Aber ihr hattet bestimmt auch den Satz, dass wenn man zwei stochastisch unabhängige einfache zufallsvariablen hat, dann ist die Summe und die Differenz der beiden auch stochastisch unabhängig. Versuche das mal zu verwenden.
  

>  
> Weiterhin wissen wir.
>   [mm]Var(X_i)=(a^2+b^2)\sigma^2 [/mm].
>   [mm]\operatorname{Cov}(X_i, X_j) := \operatorname E\bigl((X_i[/mm]
> - [mm]\operatorname E(X_i))(X_j[/mm] - [mm]\operatorname E(X_j))\bigr)[/mm]
> [mm]Var(C+D)=Var(C)+Var(D)+2\cdot COV(C,D)[/mm]
>  
>  


Bezug
                                                                                                                                
Bezug
unabhängige Z.v. E(X) Var(X): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:04 Di 20.01.2009
Autor: Nataliee

Danke blascowitz für deine Hilfe müßte jetzt selber zurecht kommen.
Bei Fragen melde ich mich nochmal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]