uneigentliche Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:29 So 04.03.2012 | Autor: | rubi |
Aufgabe | Untersuche ob das Integral [mm] \integral_{0}^{\bruch{3}{4}\pi}{tan(x) dx}
[/mm]
existiert.
Falls ja, wie lautet der Cauchysche Hauptwert des Integrals ? |
Hallo zusammen,
ich habe folgendes nachgelesen:
1.) Wenn man ein Intergal von x = a bis x = b über f(x) berechnet, und f(x) besitzt innerhalb dieses Intervalls eine Definitionslücke bei x = c , dann existiert das Integral, sofern man die uneigentlichen Integrale von x = a bis x = c bzw. von x = c bis x = b jeweils getrennt berechnen kann und dabei endliche Ergebnisse herauskommen.
Das wäre meines Erachtens z.B. bei [mm] \integral_{-1}^{1}{\bruch{1}{\wurzel{|x|}} dx} [/mm] (mit c = 0) so. Korrekt ?
2.) Auch wenn die einzelnen uneigentlichen Integrale, wie unter 1.) beschrieben, nicht existieren, kann das Gesamtintegral von x = a bis x = b existieren, sofern [mm] \limes_{z\rightarrow 0} (\integral_{a}^{c-z}f(x)dx [/mm] + [mm] \integral_{c+z}^{b} [/mm] f(x)dx) existiert.
Sofern dieser Grenzwert existiert, wird dem Gesamtingegral dieser Wert als Ergebnis (=Cauchyscher Hauptwert) zugewiesen.
Ich weiß nun nicht, ob dieser 2.Fall auf das in der Aufgabe stehende Integral zutrifft oder nicht.
Bei [mm] x=\bruch{\pi}{2} [/mm] ist tan(x) nicht definiert, daher integriert man hier über eine Unstetigkeitsstelle hinweg.
Wenn man nur von x = 0 bis [mm] x=\bruch{\pi}{2} [/mm] integriert, sieht das so aus:
[mm] \integral_{0}^{z}{tan(x) dx}=-ln|cos(z)| [/mm] + ln|cos(0)|
Lässt man nun z gegen [mm] \bruch{\pi}{2} [/mm] laufen, läuft der erste Summand gegen [mm] \infty.
[/mm]
Damit kann das unter 1.) beschriebene nicht angewandt werden.
Wie kann ich nun prüfen, ob das unter 2.) beschriebene gilt, das heißt, ob der Cauchysche Hauptwert hier existiert ?
Man hat ja rechts von der Definitonslücke bei tan(x) ebenfalls eine genau so große unendliche Fläche unterhalb der x-Achse, so dass man ja auch sagen könnte, dass sich die Flächen gegenseitig aufheben.
Ist es das, was mir die Aussage 2.) sagen möchte ?
Kann ich die Integrale quasi getrennt berechnen und dann "ln(0)" (das ja einmal mit +ln(0) und einmal mit -ln(0) vorkommt) sich einfach gegenseitig aufheben lassen ?
Vielen Dank für eure Antworten
Viele Grüße
Rubi
Ich habe diese Frage in keinem anderen Forum gestellt.
|
|
|
|
> Untersuche ob das Integral
> [mm]\integral_{0}^{\bruch{3}{4}\pi}{tan(x) dx}[/mm]
> existiert.
> Falls ja, wie lautet der Cauchysche Hauptwert des Integrals
> ?
> Hallo zusammen,
>
> ich habe folgendes nachgelesen:
> 1.) Wenn man ein Intergal von x = a bis x = b über f(x)
> berechnet, und f(x) besitzt innerhalb dieses Intervalls
> eine Definitionslücke bei x = c , dann existiert das
> Integral, sofern man die uneigentlichen Integrale von x = a
> bis x = c bzw. von x = c bis x = b jeweils getrennt
> berechnen kann und dabei endliche Ergebnisse herauskommen.
> Das wäre meines Erachtens z.B. bei
> [mm]\integral_{-1}^{1}{\bruch{1}{\wurzel{|x|}} dx}[/mm] (mit c = 0)
> so. Korrekt ?
>
> 2.) Auch wenn die einzelnen uneigentlichen Integrale, wie
> unter 1.) beschrieben, nicht existieren, kann das
> Gesamtintegral von x = a bis x = b existieren, sofern
> [mm]\limes_{z\rightarrow 0} (\integral_{a}^{c-z}f(x)dx[/mm] +
> [mm]\integral_{c+z}^{b}[/mm] f(x)dx) existiert.
> Sofern dieser Grenzwert existiert, wird dem Gesamtingegral
> dieser Wert als Ergebnis (=Cauchyscher Hauptwert)
> zugewiesen.
>
>
> Ich weiß nun nicht, ob dieser 2.Fall auf das in der
> Aufgabe stehende Integral zutrifft oder nicht.
>
>
> Bei [mm]x=\bruch{\pi}{2}[/mm] ist tan(x) nicht definiert, daher
> integriert man hier über eine Unstetigkeitsstelle hinweg.
>
> Wenn man nur von x = 0 bis [mm]x=\bruch{\pi}{2}[/mm] integriert,
> sieht das so aus:
>
> [mm]\integral_{0}^{z}{tan(x) dx}=-ln|cos(z)|[/mm] + ln|cos(0)|
> Lässt man nun z gegen [mm]\bruch{\pi}{2}[/mm] laufen, läuft der
> erste Summand gegen [mm]\infty.[/mm]
> Damit kann das unter 1.) beschriebene nicht angewandt
> werden.
>
> Wie kann ich nun prüfen, ob das unter 2.) beschriebene
> gilt, das heißt, ob der Cauchysche Hauptwert hier
> existiert ?
>
> Man hat ja rechts von der Definitonslücke bei tan(x)
> ebenfalls eine genau so große unendliche Fläche unterhalb
> der x-Achse, so dass man ja auch sagen könnte, dass sich
> die Flächen gegenseitig aufheben.
>
> Ist es das, was mir die Aussage 2.) sagen möchte ?
> Kann ich die Integrale quasi getrennt berechnen und dann
> "ln(0)" (das ja einmal mit +ln(0) und einmal mit -ln(0)
> vorkommt) sich einfach gegenseitig aufheben lassen ?
>
> Vielen Dank für eure Antworten
> Viele Grüße
> Rubi
Hallo Rubi,
als "gewöhnliches" Integral ist dieses Integral nicht definiert.
Da jedoch die Tangensfunktion in der Umgebung der heiklen
Stelle [mm] \pi/2 [/mm] punktsymmetrisch bezüglich des Zentrums [mm] (\pi/2\,|\,0)
[/mm]
ist (analog wie 1/x an der Stelle 0) , wird es möglich sein,
einen Cauchy-Hauptwert zu definieren. Wenn ich mir den
Verlauf des Funktionsgraphs vor Augen führe, müsste dieser
Hauptwert identisch sein mit dem Wert des Integrals, wenn
man tan(x) nur von x=0 bis [mm] x=\pi/4 [/mm] integriert (die weiteren
Beiträge von [mm] x=\pi/4 [/mm] bis [mm] x=\pi/2 [/mm] und von da bis [mm] x=3*\pi/4
[/mm]
heben sich gegenseitig auf.
LG Al-Chw.
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 00:08 Mo 05.03.2012 | Autor: | rubi |
Hallo,
danke für die Antwort.
Ich habe das nun so verstanden, dass ein Cauchyscher Hauptwert immer dann existiert, wenn die unendlichen Flächen (einmal oberhalb und einmal unterhalb der x-Achse) um die Definitionslücke jeweils gleich groß sind.
Was ich aber noch nicht verstehe ist, dass ich bei 2.) ja die Limes-Bedingung hingeschrieben habe, die nach meinem Kenntnisstand erfüllt sein muss, damit der Cauchysche Hauptwert existiert.
Mit meinem Integral wäre dies dann ja:
[mm] -ln|cos(\bruch{\pi}{2}-z)|+ln|cos(0)| [/mm] + [mm] (-ln|cos(\bruch{3\pi}{4})| [/mm] + [mm] ln|cos(\bruch{\pi}{2}+z)|
[/mm]
Kann ich jetzt einfach sagen, dass die Logarithmusterme [mm] -ln|cos(\bruch{\pi}{2}-z)| [/mm] und [mm] ln|cos(\bruch{\pi}{2}+z)| [/mm] für z gegen 0 sich gegenseitig aufheben und damit weggestrichen werden können ?
Ich habe übrigens eine ähnliche Aufgabe zum Integral [mm] \integral_{-2}^{1}{\bruch{1}{x^k} dx}, [/mm] wobei k eine natürliche Zahl ist.
Kann man da nun genauso hinsichtlich der Flächen argumentieren ?
Hier integriert man ja über die Definitionslücke 0 hinweg und ich würde hier sagen, dass für ungerade Zahlen für k der Cauchysche Hauptwert existiert und die gerade Zahlen k nicht.
Simmt das ?
Viele Grüße
Rubi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:20 Mi 07.03.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|