matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieunendlicher Würfelwurf Aufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - unendlicher Würfelwurf Aufgabe
unendlicher Würfelwurf Aufgabe < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unendlicher Würfelwurf Aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:36 Sa 14.07.2018
Autor: mathnoob9

Aufgabe
Betrachten sie den [mm] \infty [/mm] - fachen unabhängigen Wurf eines fairen Würfels.Für n [mm] \in \IN [/mm]
seien [mm] X_n [/mm] die im Zeitpunkt n geworfene Augenzahl.
Bestimmen sie die Verteilung von T=inf{ k [mm] \in \IN [/mm]  : X_2k-1 + X_2k=5 }

Hey Leute,

Komme bei dieser Aufgabe nicht weiter , ich verstehe garnicht was für eine Verteilung ich hier bestimmen soll.
Hat die Aufgabe etwas mit stochastischen Prozessen zutun?

Danke!

        
Bezug
unendlicher Würfelwurf Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Sa 14.07.2018
Autor: HJKweseleit

Am schönsten bei diesen Aufgaben ist immer die "präzise" Aufgabenstellung, die man erst nach 5-fachem Durchlesen versteht...

Die Aufgabe heißt:
Du würfelst mit einem Würfel und fasst immer zwei Würfe als geordnetes Paar auf, nämlich den Wurf mit der Nummer 2k-1 und den mit der Nummer 2k, also für

k=1: Wurf 1 und 2
k=2: Wurf 3 und 4
...

und wartest, bis zum ersten Mal (=inf, Infimum) die Augensumme dieser beiden Würfe 5 ist.

Also:
Wie w. ist es, dass das erste Paar die Augensumme 5 hat? (T(1))
Wie w. ist es, dass das zweite Paar die Augensumme 5 hat, die 5 aber nicht schon vorher auftrat? (T(2))
Wie w. ist es, dass das dritte Paar die Augensumme 5 hat, die 5 aber nicht schon vorher auftrat? (T(3))
...


Bezug
                
Bezug
unendlicher Würfelwurf Aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:05 So 15.07.2018
Autor: mathnoob9

Hola,

danke für die TIpps und das übersetzen der Aufgabe^^

Diese Parre von Würfel Würfen würde ich als Werfen von 2 Würfeln auffassen.

Dann gilt für den 1. Wurf der beiden Würfel.
Die WK um die AS 5 zu erzielen beträgt 5/36 mit den Möglichkeiten:
(1,4);(4,1);(2,3);(3,2);(2,3)

Im n-ten Wurf gilt dann die WK das bisher nie die AS 5 erzielt wurde * der WK für die AS=5

also errechnet man die WK für den n-ten Wurf mit:

[mm] P[X=n]=(31/36)^n [/mm] * (5/36)

korrekt?

Bezug
                        
Bezug
unendlicher Würfelwurf Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 So 15.07.2018
Autor: angela.h.b.


> Hola,

>

> danke für die TIpps und das übersetzen der Aufgabe^^

>

> Diese Parre von Würfel Würfen würde ich als Werfen von 2
> Würfeln auffassen.

>

> Dann gilt für den 1. Wurf der beiden Würfel.
> Die WK um die AS 5 zu erzielen beträgt 5/36 mit den
> Möglichkeiten:
> (1,4);(4,1);(2,3);(3,2);(2,3)

Hallo,

>

> Im n-ten Wurf gilt dann die WK das bisher nie die AS 5
> erzielt wurde * der WK für die AS=5

"Bisher nie" bedeutet doch, daß (n-1)-mal eine andere Augensumme erzielt wurde.
Beim n-ten Wurf hat man dann die Augensumme 5.

>

> also errechnet man die WK für den n-ten Wurf mit:

>

> [mm]P[X=n]=(31/36)^{n\red{-1}}[/mm] * (5/36)

EDIT: beachte HJKweseleits Hinweis!

LG Angela
>

> korrekt?


Bezug
                        
Bezug
unendlicher Würfelwurf Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Mo 16.07.2018
Autor: HJKweseleit


> Hola,
>  
> danke für die TIpps und das übersetzen der Aufgabe^^
>  
> Diese Parre von Würfel Würfen würde ich als Werfen von 2
> Würfeln auffassen.
>  
> Dann gilt für den 1. Wurf der beiden Würfel.
>  Die WK um die AS 5 zu erzielen beträgt 5/36 mit den
> Möglichkeiten:
>  (1,4);(4,1);(2,3);(3,2);(2,3)

Vorsicht: Du hast (2,3) doppelt dabei. Die W. für Augensumme 5 beträgt [mm] \bruch{4}{36}= \bruch{1}{9}. [/mm]

Tipp: Wenn du am Schluss alle W. zusammenzählst, muss 1 herauskommen, weil theoretisch bei [mm] \infty [/mm] vielen Würfen irgendwann immer die Augensumme 5 erscheint. Du solltest zu Übungszwecken die entsprechende geometrische Reihe berechnen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 15m 2. matux MR Agent
UWTheo/stationär/ergodisch
Status vor 2h 38m 2. fred97
IntTheo/Uneigentliches Integral
Status vor 22h 15m 9. matux MR Agent
UStoc/Kombinatorik Beispiele
Status vor 23h 51m 2. Gonozal_IX
UAnaR1FolgReih/Reihen
Status vor 1d 2h 13m 1. nkln
ZahlTheo/multivariante Polynome Nullste
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]