matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete Mathematikungerade Anzahl von Teiler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Diskrete Mathematik" - ungerade Anzahl von Teiler
ungerade Anzahl von Teiler < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ungerade Anzahl von Teiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 So 24.10.2010
Autor: oby

Aufgabe
Zeige, dass eine Zahl $ n [mm] \in \IN [/mm] $ genau dann eine ungerade Anzahl von Teilern
besitzt, wenn $ [mm] \wurzel{n} [/mm] $eine naturliche Zahl ist.

Hallo Matheraum.
Ich habe bereits eine Richtung zeigen können, und zwar dass aus wenn $ n $ eine Quadratzahl ist, dann ist die Anzahl der Teiler ungerade. Dies habe ich über die Primzaktorzerlegung hingekriegt, also mal so ne allgemeine Primfaktorzerlegung von $ [mm] \wurzel{n} [/mm] $ hingeschrieben, dann kommt in der Primfaktorzerlegung von $ n $ jeweils ein gerader Exponent vor. Also so:
$ n = [mm] p_1^{2e_1}p_2^{2e_2} [/mm] ... [mm] p_m^{2e_m} [/mm] $
Dann ist die Anzahl der Teiler gerade $  [mm] \produkt_{i=1}^{m} (2e_i+1) [/mm] $ , da ich die Teiler dadurch bestimme, dass ich jeweils einen Exponenten $ [mm] t_i [/mm] $ zwischen 0 und [mm] $e_i$ [/mm] auswählen kann . Und das ist immer ungerade, weil das Produkt ungerader Zahle immer ungerade ist.
So nun zur umgekehrten Richtung:
Habs auch erst irgendwie über Primfaktorzerlegung versucht, dann hab ichs mal mit Induktion nach Anzahl der Teiler versucht, aber beides hat nicht gefruchtet...
Vielleicht habt ihr eine gute Idee ?? Sollte eigentlich nicht so schwierig sein, weil die Aufgabe nur zwei Punkte bringt... Vielleicht könntet ihr mir auch meine gezeigte Richtung kurz bestätigen (oder vielleicht hab ich ja einen Denkfehler drin. Das kommt bei mir oft mal vor. :) ).
Danke schon mal,
Oby

        
Bezug
ungerade Anzahl von Teiler: Teiler kommen paarweise
Status: (Antwort) fertig Status 
Datum: 21:47 So 24.10.2010
Autor: moudi

Hallo Oby

Ein kleiner Tipp: Man kann Teiler immer paarweise bilden. Ist k ein Teiler von n, dann ist auch [mm] $\frac [/mm] nk$ ein Teiler. Besitzt die Zahl also eine ungerade Anzahl von Teilern, dann muss dass "mittlere Paar" aus nur eine Zahl bestehen. Was folgt dann daraus fuer n?

mfG Moudi

Bezug
                
Bezug
ungerade Anzahl von Teiler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:08 So 24.10.2010
Autor: oby

Hallo,
Achso, Danke- so schwer war's ja gar nicht.. Aber auf die Idee musste man halt kommen, also vielen Dank!
Schönen Abend noch!
Oby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]