matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemeungleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - ungleichungen
ungleichungen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ungleichungen: aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 16:55 Mo 18.10.2010
Autor: sandra1980

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

hallo..folgende ungleichung habe ich soweit ich konnte berechnet..ich weiss allerdings nicht ob die lösung richtig ist..wie gebe ich jetzt die lösungsmengen an.

[mm] \bruch{x+3}{x-3}<5 [/mm]

fall 1: x-3>0

x+3>5x-15
-4x>-18
[mm] x>\bruch{18}{4} [/mm]  

fall 2: x-3<0

x+3<5x-15    
[mm] x<\bruch{18}{4} [/mm]



        
Bezug
ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Mo 18.10.2010
Autor: schachuzipus

Hallo sandra1980,

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>
> hallo..folgende ungleichung habe ich soweit ich konnte
> berechnet..ich weiss allerdings nicht ob die lösung
> richtig ist..wie gebe ich jetzt die lösungsmengen an.
>
> [mm]\bruch{x+3}{x-3}<5[/mm]
>
> fall 1: x-3>0
>
> x+3>5x-15
> -4x>-18 [ok]
> [mm]x>\bruch{18}{4}[/mm] [notok]

Du musst aufpassen! Wenn du eine Ungleichung mit einer negativen Zahl (hier [mm]-\frac{1}{4}[/mm]) multiplizierst, dreht sich das Ungleichheitszeichen um!

Richtig also [mm]x \ \red{<} \ \frac{18}{4}=\frac{9}{2}[/mm]

>
> fall 2: x-3<0
>
> x+3<5x-15 [notok]

Es ist [mm]x-3<0[/mm], wenn du die Ungleichung damit multiplizierst, ergibt sich nach dem oben Gesagten:

[mm]x+3 \ \red{>} \ 5(x-3)[/mm] usw.

> [mm]x<\bruch{18}{4}[/mm]
>
>

Gruß

schachuzipus

Bezug
                
Bezug
ungleichungen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:39 Mo 18.10.2010
Autor: sandra1980

ok danke für deine hilfe.
ich schreib das nochmal sauber hier rein..hoffe das es richtig ist

fall I: x-3>0
x+3>5x-15
-4x>-18
[mm] x<\bruch{9}{2} [/mm]

lösungsmenge [mm] L=(-\infty;\bruch{9}{2}) [/mm]

fall II: x-3<0

x+3<5x-15
-4x<-18
[mm] x>\bruch{9}{2} [/mm]

[mm] L=(\bruch{9}{2};\infty) [/mm]
hoffe bis hierhin ist das richtig..

sind die lösungsmengen denn richtig angegeben

liebe grüße

Bezug
                        
Bezug
ungleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:51 Mo 18.10.2010
Autor: angela.h.b.

Hallo,

s. meine Antwort.

Gruß v. Angela


Bezug
        
Bezug
ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Mo 18.10.2010
Autor: angela.h.b.


> [mm]\bruch{x+3}{x-3}<5[/mm]
>  
> fall 1: x-3>0
>  
> x+3>5x-15

Hallo,

das ist nicht richtig:

Du multiplizierst doch mit x-3, also mit etwas, was größer als 0 ist.
Also bleibt die Richtung des Ungleichheitszeichens erhalten.

Es ist also [mm] x+3\red{<}5x-15. [/mm]

Jetzt weiter mit den sonstigen Erkenntnissen, die Du im Thread gewonnen hast.

Fall 2 analog.

Gruß v. Angela

>  -4x>-18
>  [mm]x>\bruch{18}{4}[/mm]  
>
> fall 2: x-3<0
>  
> x+3<5x-15    
> [mm]x<\bruch{18}{4}[/mm]
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]