matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraunitäre Matrizen / ONB
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - unitäre Matrizen / ONB
unitäre Matrizen / ONB < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unitäre Matrizen / ONB: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 02:37 Mi 26.10.2005
Autor: Yberion

Hallo,
ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hier die Aufgabe:

Sei A [mm] \in\IC^{n,n} [/mm] und [mm] A^{H} [/mm] :=  [mm] \overline{A^{T}} [/mm]

Zu zeigen ist:
[mm] AA^{H}= A^{H}A \gdw [/mm] A besitzt eine orthonormale Basis aus Eigenvektoren

Ich habe mit der Hinrichtung;) angefangen und mir gedacht, damit wir überhaupt eine Basis aus Eigenvektoren haben muß A erstmal diagonalisierbar sein. Da hab ich auch schon das erste Problem, wie kann ich aus [mm] AA^{H}=A^{H}A [/mm] folgern, dass A diagonalisierbar ist?
Falls ich das irgendwann geschafft habe muß ich noch zeigen, das die Eigenvektoren orthogonal sind (das sie normiert sind kann ich ja annehmen).
Bei der Rückrichtung sieht es ein bißchen besser aus. Da ich ja eine Basis aus Eigenvektoren habe, ist mein A ja ähnlich zu einer Diagonalmatrix. Dann hab ich einfach mal für A, [mm] BA^{'}B^{-1} [/mm] eingesetzt, wobei B die Basisübergangsmatrix und [mm] A^{'} [/mm] die Diagonalmatrix ist.Eine Möglichkeit zum vereinfachen habe ich hier aber auch noch nicht gefunden.

        
Bezug
unitäre Matrizen / ONB: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Mi 26.10.2005
Autor: Stefan

Hallo!

Man beweist das -so denke ich- am besten durch vollständige Induktion nach $n$. Betrachte einen beliebigen Eigenvektor $v$ und wende die Induktionsvoraussetzung auf [mm] $W=\langle [/mm] v [mm] \rangle^{\perp}$ [/mm] an. Vergewissere dich aber vorher davon, dass tatsächlich $A:W [mm] \to [/mm] W$ gilt...

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]