matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer Gleichungssystemeunterbestimmtes Gl.system
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Numerik linearer Gleichungssysteme" - unterbestimmtes Gl.system
unterbestimmtes Gl.system < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unterbestimmtes Gl.system: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Do 30.11.2006
Autor: zoro

Aufgabe
  Hallo alle zusammen!
Ich hab folgendes Problem:
ein unterbestimmtes Gleichungssystem mit 6 Gleichungen und 39 Unbekannten!!!
Dies will ich lösen, allerdings mit folgender Bedingung:
-Die gesuchten, unbekannten 39 Parametern müssen in der Lösung alle positiv sein (wichtig)

Mir ist bekannt dass ein unterbestimmtes Gl.system durch Annährunsverfahren gelöst wird. Dies habe ich auch versucht und bekomme aber unteranderen auch negative Lösungswerte. Genau dass soll nicht sein!
Meine Frage: Wie und bei welchem Verfahren kann man diese Bedienung setzen, dass alle Unbekanten, in dem Lösungsvektor positiv sein sollen.
Ob das überhaupt möglich ist???

Wie auch immer, ich wäre euch echt für jeden Lösungsvorschlag dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
unterbestimmtes Gl.system: Antwort
Status: (Antwort) fertig Status 
Datum: 02:52 Sa 16.12.2006
Autor: Marc

Hallo zoro,

>  Ich hab folgendes Problem:
>  ein unterbestimmtes Gleichungssystem mit 6 Gleichungen und
> 39 Unbekannten!!!
>  Dies will ich lösen, allerdings mit folgender Bedingung:
>  -Die gesuchten, unbekannten 39 Parametern müssen in der
> Lösung alle positiv sein (wichtig)
>  Mir ist bekannt dass ein unterbestimmtes Gl.system durch
> Annährunsverfahren gelöst wird. Dies habe ich auch versucht
> und bekomme aber unteranderen auch negative Lösungswerte.
> Genau dass soll nicht sein!
>  Meine Frage: Wie und bei welchem Verfahren kann man diese
> Bedienung setzen, dass alle Unbekanten, in dem
> Lösungsvektor positiv sein sollen.
>  Ob das überhaupt möglich ist???

Im allgemeinen Fall sicher nicht, eine der Gleichungen könnte ja lauten [mm] $x_1=-1$ [/mm]
  

> Wie auch immer, ich wäre euch echt für jeden
> Lösungsvorschlag dankbar.

Vielleicht kann man eine positive Lösung einfacher ablesen, wenn man den Lösungsraum parametrisiert darstellt, bei z.B. 3 Gleichungen und 6 Unbekannten bspw.

[mm] $\vektor{x_1\\x_2\\x_3\\x_4\\x_5\\x_6}=\vektor{1\\-1\\1\\0\\0\\0}+x_4*\vektor{-5\\0\\1\\1\\0\\0}+x_5*\vektor{-3\\1\\1\\0\\1\\0}+x_6*\vektor{1\\2\\3\\0\\0\\1}$ [/mm]

(Dabei sind [mm] $x_4,x_5,x_6$ [/mm] die freien Variablen des LGS)

Nun kann man folgende Ungleichungen aufstellen (zusätzlich zu [mm] $x_1,\ldots,x_6>0$): [/mm]

I [mm] $-5x_4-3x_5+x_6>-1$ [/mm]

II [mm] $x_5+2x_6>1$ [/mm]

III [mm] $x_4+x_5+3x_6>-1$ [/mm]

Die Variablen mit negativen Koeefizienten wähle ich möglichst klein:

Wähle [mm] $x_4=2$, $x_5=1$ $\Rightarrow\ x_6>12$ [/mm] also [mm] $x_6=13$ [/mm]

Dann erhalte ich

[mm] $\vektor{1\\-1\\1\\0\\0\\0}+2*\vektor{-5\\0\\1\\1\\0\\0}+\vektor{-3\\1\\1\\0\\1\\0}+13*\vektor{1\\2\\3\\0\\0\\1}=\vektor{1\\26\\43\\2\\1\\13}$ [/mm]


Das Ganze erinnert mich ein bisschen an die lineare Optimierung, vielleicht hilft es ja (ich sehe es nicht), in dem obigen Ungleichungssystem ebenfalls "Schlupfvariablen" einzuführen

I [mm] $-5x_4-3x_5+x_6+x_7=-1$ [/mm]
II [mm] $x_5+2x_6+x_8=1$ [/mm]
III [mm] $x_4+x_5+3x_6+x_9=-1$ [/mm]

Viele Grüße,
Marc


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]