matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnungvektorprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - vektorprodukt
vektorprodukt < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektorprodukt: aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:55 Do 11.01.2007
Autor: night

Aufgabe
Berechnen Sie den Flächeninhalt des Dreiecks ABC
a.)A(0|0|0),B(1|7|3),C2|-3|4),D(6|1|10),
b) A(1|-2|12),B(11|3|5),C(3|5|8),D(19|4|4).

Hallo,

Ich habe diese Formel

$V= [mm] |(\vec{a} [/mm] x [mm] \vec{b}) [/mm] * [mm] \vec{c}|$ [/mm]

Aber irgendwie komme ich nicht auf den Lösungsansatz..
was genau muss ich machen....
Ich hoffe ihr könnt mir einen Ansatz liefern.
Vielen Dank
Daniel

        
Bezug
vektorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Do 11.01.2007
Autor: informix

Hallo night,

> Berechnen Sie den Flächeninhalt des Dreiecks ABC
>  a.)A(0|0|0),B(1|7|3),C2|-3|4),D(6|1|10),
>  b) A(1|-2|12),B(11|3|5),C(3|5|8),D(19|4|4).
>  Hallo,
>  
> Ich habe diese Formel
>  
> [mm]V= |(\vec{a} x \vec{b}) * \vec{c}|[/mm]
>  
> Aber irgendwie komme ich nicht auf den Lösungsansatz..

Was sollen denn [mm] \vec{a},... [/mm] sein? Ortsvektoren oder Richtungsvektoren?

Wenn du dies herausgefunden hast, musst du nur noch einsetzen.

>  was genau muss ich machen....
>  Ich hoffe ihr könnt mir einen Ansatz liefern.
>  Vielen Dank
>  Daniel


Gruß informix

Bezug
                
Bezug
vektorprodukt: Ortsvektoren?
Status: (Frage) beantwortet Status 
Datum: 17:44 Do 11.01.2007
Autor: night

Aufgabe
...

Hallo,
vielen dank für deine antwort.

Jedes Vektorprodukt von zwei Spannvektoren der Ebene ergibt einen Normalenvektor oder?
Ortsvektoren!

Ich muss die Punkte aber nicht einfach in a b c einsetzen oder?

Ich glaube ich habe das leider nicht wirklich verstanden...
Wäre gut wenn du vielleicht nochmal schreiben würdest
Danke,
Daniel

Bezug
                        
Bezug
vektorprodukt: Was ist ein Spat?
Status: (Frage) beantwortet Status 
Datum: 17:47 Do 11.01.2007
Autor: night

Aufgabe
...

hi,

Ich würde gerne wissen was ein Spat ist?
Wie sieht es außerdem im R2 und R3 aus?
Wäre schön wenn mir jemand helfen könnte
Danke

Bezug
                                
Bezug
vektorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Do 11.01.2007
Autor: Zwerglein

Hi, night,

schau mal z.B. hier:
[]http://de.wikipedia.org/wiki/Parallelepiped

mfG!
Zwerglein

Bezug
                        
Bezug
vektorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Do 11.01.2007
Autor: Zwerglein

Hi, night,

> Jedes Vektorprodukt von zwei Spannvektoren der Ebene ergibt
> einen Normalenvektor oder?

Wenn sie nicht parallel liegen, ja!

> Ich muss die Punkte aber nicht einfach in a b c einsetzen oder?

Nein; das wären ja dann auch 4 Punkte!
Du musst die Vektoren [mm] \overrightarrow{AB}, \overrightarrow{AC} [/mm] und  [mm] \overrightarrow{AD} [/mm] einsetzen
(was in der ersten Aufgabe drauf hinausläuft, dass Du die Ortsvektoren von B, C und D einsetzt!)

Ach ja, und: Ein Spat ist dasselbe wie ein "Parallelflach", also sowas wie ein "schiefer Quader".

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]