matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebravektorraum und lin abbild
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - vektorraum und lin abbild
vektorraum und lin abbild < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektorraum und lin abbild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 04:07 Do 11.01.2007
Autor: toggit

Aufgabe
Zeigen Sie, dass
U ={f : [0; 1] [mm] \to\IR| [/mm] f ist zwei Mal differenzierbar auf dem Interval [0; 1] und f'' ist stetig}
ein [mm] \IR-Vektorraum [/mm] ist (bzgl. gewöhnlicher Skalarmultiplikation und Addition von Funktionen).
Entscheiden Sie nun, ob folgende Aussagen wahr oder falsch sind:
a) Die Teilmenge V [mm] \subset [/mm] U gegeben durch
V = [mm] {f\inU |f(1) = f(0) = 1} [/mm]
ist ein Untervektorraum von U.
b) Die Teilmenge W [mm] \subsetU [/mm] gegeben durch
W = {f [mm] \in [/mm] U| f(1) = f(0)}
ist ein Untervektorraum von U.
c) Für jedes Tripel [mm] (\alpha;\beta;\gamma) \in R^{3} [/mm] und jedes x [mm] \in [/mm] [0; 1] defniert
$ Phi| $: [mm] U\to \IR, f\mapsto \alpha [/mm] f(x) + [mm] \beta [/mm] f'(x) +
[mm] \gamma [/mm] f''(x)
eine [mm] \IR-lineare [/mm] Abbildung.
d) Für jedes Tripel [mm] (\alpha;\beta;\gamma) \in R^{3} [/mm] und jedes [mm] x\in [/mm] [0; 1] ist
X = [mm] {f\in U|\alpha f(x) + \beta f'(x) + \gamma f''(x) = 0} [/mm]
ein Untervektorraum von U.

hallo
habe nicht dem blosen schimmel wie ich beweisen kann das U ein vektorraum ist!!!
soll ich jede vektorraumaxiom prüfen? (wie prüfe ich den differenzierbarkeit und existenz von f'' ?)
kann mir jemand weiter helfen?
mfg toggit

        
Bezug
vektorraum und lin abbild: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Do 11.01.2007
Autor: mathiash

Hallo und guten Tag,

U ist ein Vektorraum, da es eine Teilmenge von [mm] M=\{f\: |\: f\colon [0,1]\to\IR\} [/mm] ist, die abgeschlossen unter Addition und
skalarer Multiplikation ist (d.h.  Du musst wissen oder zeigen durch explizites Beweisen der Gültigkeit aller
Vektorraumaxiome, dass M ein [mm] \IR-Vektorraum [/mm] ist, dann verbleibt es noch zu zeigen, daß mit [mm] f,g\in [/mm] U und [mm] \lambda\in\IR [/mm] auch die Funktionen [mm] \lambda\cdot [/mm] f und f+g in U sind).

Zu (a): Wenn f(1)=g(1)=1, so ist (f+g)(1)=f(1)+g(1)=2.

Zu (b): Ist Untervektorraum (zeige wiederum Abgeschlossenheit unter Addition und skalarer Mult.).

Zu (c): Das liegt daran, daß  (f+g)'=f'+g' und damit auch (f+g)''=f''+g''.

(d) schaffst Du dann schon selber.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]