matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigesverallgemeinerte Eigenräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - verallgemeinerte Eigenräume
verallgemeinerte Eigenräume < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

verallgemeinerte Eigenräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 Mo 15.06.2015
Autor: zahlenfreund

Aufgabe
Bestimmen Sie die verallgemeinerten Eigenräume von B und die Matrix [mm] B^{50} [/mm] für  [mm] B=\begin{pmatrix} -1 & -4 & -1 \\ 2 & 4 & 2 \\ 1 & 4 & 1 \\ \end{pmatrix} [/mm]

Hallo Leute,

Das Charakteristische Polynom lautet [mm] P_{B}(x)=4x^{2}-x^{3} [/mm]
Eigenwerte [mm] x_{1}=4 x_{2}=0 [/mm]
Eigenraum bestimmen  [mm] V(x_{1}) [/mm] = [mm] \begin{pmatrix} 1 & -4 & -3 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix} [/mm]  (nach Gaussumformung)
[mm] V(x_{1})= [/mm] ( v [mm] \in [/mm] V | [mm] v=\vektor{7s \\ s \\ s}, s\in \IR [/mm] ) [mm] dim(V(x_{1}))=1 [/mm]
Wie bestimme ich jetzt den verallgemeinerten Eigenraum zu [mm] x_1 [/mm]


mfg zahlenfreund

        
Bezug
verallgemeinerte Eigenräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mo 15.06.2015
Autor: fred97


> Bestimmen Sie die verallgemeinerten Eigenräume von B und
> die Matrix [mm]B^{50}[/mm] für  [mm]B=\begin{pmatrix} -1 & -4 & -1 \\ 2 & 4 & 2 \\ 1 & 4 & 1 \\ \end{pmatrix}[/mm]
>  
> Hallo Leute,
>  
> Das Charakteristische Polynom lautet [mm]P_{B}(x)=4x^{2}-x^{3}[/mm]
>  Eigenwerte [mm]x_{1}=4 x_{2}=0[/mm]


Nein. Die Eigenwerte von B sind 0 und 1.


> Eigenraum bestimmen  [mm]V(x_{1})[/mm] = [mm]\begin{pmatrix} 1 & -4 & -3 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}[/mm]
>  (nach Gaussumformung)
>  [mm]V(x_{1})=[/mm] ( v [mm]\in[/mm] V | [mm]v=\vektor{7s \\ s \\ s}, s\in \IR[/mm] )

Wie Du darauf kommst, ist mir ein Rätsel !

FRED

> [mm]dim(V(x_{1}))=1[/mm]
>  Wie bestimme ich jetzt den verallgemeinerten Eigenraum zu
> [mm]x_1[/mm]
>  
>
> mfg zahlenfreund


Bezug
                
Bezug
verallgemeinerte Eigenräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Di 16.06.2015
Autor: zahlenfreund

Ich habe die Eigenwerte mit Wolfram-Alpha berechnet und bekomme [mm] x_{1}=4 [/mm] und [mm] x_{2}=0 x_{3}=0. [/mm]

Den Eigenraum [mm] V(x_{1}) [/mm] habe ich folgendermaßen berechnet
[mm] V(x_{1})=Kern\begin{pmatrix} (-1-x_{1}) & -4 & -1 \\ 2 & (4-x_{1}) & 2 \\ 1 & 4 & (1-x_{1}) \\ \end{pmatrix} [/mm] nach Gaussumformungen erhalte ich die Matrix [mm] V(x_{1})=Kern\begin{pmatrix} 1 & 4 & -3 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix} [/mm]
Jetzt kann ich aus der Matrix ablesen [mm] v_{1}+4*v_{2}-3*v_{3}=0, [/mm]
[mm] -v_{2}+v_{3}=0, v_{3}=s [/mm] mit [mm] s\in \IR [/mm]

[mm] V(x_{1})= [/mm] ( v  [mm] \in [/mm]  V |  [mm] v=s*\vektor{-1\\ 1\\ 1}, s\in \IR) [/mm]

Mal von Rechenfehlern abgesehen wie bestimme ich den verallgemeinerten Eigenraum ?

Gruß zahlenfreund


Bezug
                        
Bezug
verallgemeinerte Eigenräume: Antwort
Status: (Antwort) fertig Status 
Datum: 10:09 Mi 17.06.2015
Autor: fred97

Ist A eine Matrix und [mm] \lambda [/mm] ein Eigenwert von A, so ist

   [mm] Kern(A-\lambda [/mm] E)

der Eigenraum von A zum Eigenwert [mm] \lambda. [/mm]

Ist r [mm] \ge [/mm] 2, r [mm] \in \IN, [/mm] so heißt

   [mm] Kern((A-\lambda E)^r) [/mm]

ein verallgemeinerter Eigenraum von A zum Eigenwert [mm] \lambda. [/mm]

Beachte: es ex. ein [mm] r_0 \in \IN [/mm] mit

   [mm] Kern((A-\lambda E)^{r_0+s})= Kern((A-\lambda E)^{r_0}) [/mm]  für alle s [mm] \in \IN. [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]