verschiedene Topologien < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo Forum
Wenn ich eine Funktion $\ H: C [mm] \subset \IR \to [/mm] L(X) $ habe, wobei $\ C $ eine kompakte Teilmenge von $\ [mm] \IR [/mm] $ ist und $\ L(X) $ der Raum aller beschränkten linearen Operatoren.
Wenn ich weiss, dass folgendes gilt:
$\ H $ ist stetig für die kompakte Konvergenz, d.h. folgende Abbildung ist gleichmässig stetig auf jeder Kompakten Teilmenge $\ K [mm] \subset [/mm] X $.
$\ [mm] K\times [/mm] C [mm] \ni (\alpha,x) \mapsto H(\alpha)(x) [/mm] $
D.h. heisst ja, $\ [mm] \forall \epsilon [/mm] >0 [mm] \forall [/mm] x,y [mm] \in [/mm] C [mm] \exists \delta [/mm] > 0$ so dass:
$\ [mm] \parallel H(\alpha)(x) [/mm] - [mm] H(\beta)(y) \parallel [/mm] < [mm] \epsilon [/mm] $ wann immer
$\ [mm] |\alpha -\beta| [/mm] < [mm] \delta [/mm] $ UND $\ [mm] \parallel [/mm] x - y [mm] \parallel [/mm] < [mm] \delta [/mm] $.
Jetzt möchte ich gerne die Stetigkeit der Punktweise Konvergenz folgern.
Also:
$\ [mm] \forall \epsilon [/mm] > 0 [mm] \exists \delta [/mm] >0 $ so dass $\ [mm] \forall \alpha, \beta \in [/mm] C $ mit $\ [mm] |\alpha [/mm] - [mm] \beta [/mm] | < [mm] \delta \Rightarrow \parallel H(\alpha)(x)-H(\beta)(x) \parallel [/mm] < [mm] \epsilon [/mm] $ für alle $x [mm] \in [/mm] X $.
Stimmt diese Definitionen so weit? Ich bin mir nicht ganz sicher mit der Definition von der kompakten Konvergenz. Spielt es dort keine Rolle, welchen Abstand $\ x,y $ haben?
Zum Beweis: wähle ich dann einfach das $\ [mm] \delta [/mm] $ der kompakten Konvergenz und die kompakte Menge $\ C [mm] :=\{x\} [/mm] $ oder wie macht man das ?
Gruss
physicus
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:25 Do 20.10.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|