matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionvollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - vollständige Induktion
vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 So 18.05.2008
Autor: Aldiimwald

Aufgabe
eigentlich ja klar.....aber:

Beweisen Si mit hilfe der vollst. ind.

[mm] \summe_{k=1}^{n}\bruch{1}{(6+k)(7+k)} [/mm] = [mm] \bruch{n}{7(7+n)} [/mm]

n [mm] \in [/mm] N

Also ich hänge...glaube es ist nur noch ne kleinigkeit aber ich habe grade ein brett vor dem kopf hoffe jemand von euch kann mir helfen.

I.A.:

A(1):
[mm] \summe_{k=1}^{1}\bruch{1}{(6+1)(7+1)} [/mm] = [mm] \bruch{1}{7(7+1)} [/mm] (wahr)

I.S:n--> n+1

[mm] \summe_{k=1}^{n+1}\bruch{1}{(6+k)(7+k)} [/mm] = ( [mm] \bruch{n+1}{7(8+n)}) [/mm] =

[mm] \summe_{k=1}^{n}\bruch{1}{(6+k)(7+k)} [/mm] +  [mm] \bruch{1}{(7+n)(8+n)} [/mm] =

[mm] \bruch{n}{7(7+n)} [/mm] + [mm] \bruch{1}{(7+n)(8+n)} [/mm]
und jetzt bekomme ich das irgendwie nicht weiter umgeformt so, dass ich auf [mm] \bruch{n+1}{7(8+n)} [/mm] komme.

Danke schonmal für die Hilfe

Gruß

        
Bezug
vollständige Induktion: Hauptnenner
Status: (Antwort) fertig Status 
Datum: 22:01 So 18.05.2008
Autor: Loddar

Hallo Aldiimwald!


Bringe beide Brüche auf den Hautptnenner $7*(7+n)*(8+n)_$ und fasse zusammen.


Gruß
Loddar


Bezug
                
Bezug
vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 So 18.05.2008
Autor: Aldiimwald

dann bekomme ich ja

[mm] \bruch{n (8+n)}{7(7+n) (8+n)} [/mm]  +  [mm] \bruch{1*7(7+n)}{(7+n)(8+n)7(7+n)} [/mm] = [mm] \bruch{n (8+n)+7}{7(7+n) (8+n)} [/mm]

und da hänge ich ich glaube ich hab huete schon zu viele zahlen gesehen und es is spät^^

Bezug
                        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 So 18.05.2008
Autor: abakus


>  dann bekomme ich ja
>  
> [mm]\bruch{n (8+n)}{7(7+n) (8+n)}[/mm]  +  
> [mm]\bruch{1*7(7+n)}{(7+n)(8+n)7(7+n)}[/mm] =
>  
> [mm]\bruch{n (8+n)+7}{7(7+n) (8+n)}[/mm]
>  
> und da hänge ich ich glaube ich hab huete schon zu viele
> zahlen gesehen und es is spät^^

Hallo,
du weißt doch, was laut Induktionsbehauptung herauskommen muss.

Dein letzter Term ergibt nach Ausmultiplizieren im Zähler
[mm]\bruch{n^2+8n+7}{7(7+n) (8+n)}[/mm]
Im Vergleich mit der Induktionsbehauptung hast du im Nenner einen Faktor zu viel (7+n) und im Zähler auch einen zu großen Term. Also musst du sehen, dass sich auch im Zähler (n+7) ausklammern lässt, damit sich das wegkürzt.
(Und da (n+1) im Zähler übrigbleiben soll, würde ich doch einfach mal schauen, ob eventuell [mm] (n+1)(n+7)=n^2+8n+7 [/mm] gelten könnte.....)
Viele Grüße
Abakus


Bezug
                                
Bezug
vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 So 18.05.2008
Autor: Aldiimwald

super auf die Idee bin ich noch nicht gekommen den gesuchten bruch um (7+1) zu erweitern dafür hat mir das Auge gefehlt! vielen Dank!

Bezug
                        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 So 18.05.2008
Autor: SorcererBln


Der Zähler ist [mm] 8n+n^2+7 [/mm] und das ist gerade

(7+n)(n+1),

so dass sich (7+n) schließlich herauskürzt!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]