matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionvollständige Induktion Binomia
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - vollständige Induktion Binomia
vollständige Induktion Binomia < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion Binomia: Idde
Status: (Frage) beantwortet Status 
Datum: 13:17 Mi 13.08.2008
Autor: freshstyle

Aufgabe
Zeigen Sie für alle $ n [mm] \in \IN [/mm] $ das folgendes gilt:
$ [mm] \vektor{n \\ 0} [/mm] + [mm] \vektor{n \\ 2} [/mm] + ... = [mm] \vektor{n \\ 1} [/mm] + [mm] \vektor{n \\ 3} [/mm] + ... $

Hallo,
ich brauche ein Idee für den Induktionsschritt.
Ich habe immer das Gefühl, dass sich bei allem was ich ausprobiere, ich die Induktionsverraussetzung nicht benutze.

Induktionsschritt
1 Fall n gerade $ [mm] \Rightarrow [/mm] $ n + 1 ungerade
$ [mm] \vektor{n +1 \\ 0} [/mm] + [mm] \vektor{n +1 \\ 2} [/mm] + ... +  [mm] \vektor{n +1\\ n} [/mm] = [mm] \vektor{n +1 \\ n+1 -n} [/mm] + [mm] \vektor{n +1 \\ n+1 - (n - 2)} [/mm] + ... +  [mm] \vektor{n +1 \\ n+1 - 0} [/mm] = [mm] \vektor{n +1 \\ 1} [/mm] + [mm] \vektor{n +1 \\ 3} [/mm] + ... + [mm] \vektor{n+1 \\ n+1 } [/mm] $ .

In diesen Fall habe ich einfach nur $ [mm] \vektor{ n \\ k } [/mm] = [mm] \vektor{ n \\ n-k } [/mm] $ verwendet, aber bei n ungrade verzweifel ich.

Danke freshstyle

        
Bezug
vollständige Induktion Binomia: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Mi 13.08.2008
Autor: statler

Hi!

> Zeigen Sie für alle [mm]n \in \IN[/mm] das folgendes gilt:
>  [mm]\vektor{n \\ 0} + \vektor{n \\ 2} + ... = \vektor{n \\ 1} + \vektor{n \\ 3} + ...[/mm]
>  

>  ich brauche ein Idee für den Induktionsschritt.
>  Ich habe immer das Gefühl, dass sich bei allem was ich
> ausprobiere, ich die Induktionsverraussetzung nicht
> benutze.

Muß das Induktion sein? Kennst du die Formel für [mm] (a+b)^{n} [/mm] und darfst du sie benutzen? Wenn ja, berechne mal [mm] (1+(-1))^{n}. [/mm]

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
vollständige Induktion Binomia: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Do 14.08.2008
Autor: freshstyle

Aber bei $ (1 + [mm] (-1))^n [/mm] $ wende ich den Binomianalsatz an , $ ... = 0 $ , dann schmeiße ich die koeffizienten mit einen minus vorbehaftet für und habe die Gleichheit stehen.  Weil $ (1 + [mm] (-1))^n \forall [/mm] n [mm] \in \IN [/mm] $ gilt.
Aber ich habe noch nicht verstanden wo ich die I.V einsetze.
Danke freshstyle

Bezug
                        
Bezug
vollständige Induktion Binomia: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 Do 14.08.2008
Autor: Somebody


> Aber bei [mm](1 + (-1))^n[/mm] wende ich den Binomianalsatz an , [mm]... = 0[/mm]
> , dann schmeiße ich die koeffizienten mit einen minus
> vorbehaftet für und habe die Gleichheit stehen.  Weil [mm](1 + (-1))^n \forall n \in \IN[/mm]
> gilt.
>  Aber ich habe noch nicht verstanden wo ich die I.V
> einsetze.

Die brauchst Du gar nicht, denn wie Dieter angedeutet hatte, geht es auf diesem Weg ganz bequem auch ohne Induktion:

[mm]\big(1+(-1)\big)^n=\sum\limits_{k=0}^n\binom{n}{k}(-1)^k=0\Rightarrow \sum\limits_{k=0}^{\lfloor n/2\rfloor}\binom{n}{2k}=\sum\limits_{k=0}^{\lfloor (n-1)/2\rfloor}\binom{n}{2k+1}[/mm]



Bezug
                                
Bezug
vollständige Induktion Binomia: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Do 14.08.2008
Autor: freshstyle

Aber wir sollen das per Induktion machen , deshalb.
MFG freshstyle

Bezug
                                        
Bezug
vollständige Induktion Binomia: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:07 Do 14.08.2008
Autor: Somebody


> Aber wir sollen das per Induktion machen , deshalb.

Ok, dann würde ich die Sache so ansetzen: die Summe [mm] $G_n=\binom{n}{0}+\binom{n}{2}+\cdots$ [/mm] ist die Anzahl Teilmengen einer $n$-elementigen Menge die eine gerade Anzahl Elemente besitzen und die Summe [mm] $U_n=\binom{n}{1}+\binom{n}{3}+\cdots$ [/mm] ist die Anzahl ihrer Teilmengen die eine ungerade Anzahl Elemente besitzen.

Die zu beweisende Behauptung lautet in dieser Formulierung also: für [mm] $n\geq [/mm] 1$ hat eine (endliche) Menge gleich viele Teilmengen mit gerader Anzahl von Elementen wie Teilmengen mit ungerader Anzahl von Elementen. Kurz: [mm] $G_n=U_n$ [/mm]

Beweis (induktiv):
Induktionsanfang: ist $n=1$, dann ist [mm] $G_n=\binom{1}{0}=1$ [/mm] und [mm] $U_n=\binom{1}{1}=1$, [/mm] die Behauptung gilt in diesem Fall.

Induktionsschritt: Es ist [mm] $G_{n+1}=\blue{G_n}+\red{U_n}$ [/mm] und [mm] $U_{n+1}=\blue{U_n}+\red{G_n}$ [/mm] (weshalb? - überleg mal, was geschieht, wenn man ein $n+1$-tes Element dazunimmt: blau markiert die geraden/ungeraden Teilmengen, die schon bei der $n$-elementigen Menge vorhanden waren, rot markiert, diejenigen die neu dazukommen, die also insbesondere das hinzugekommene $n+1$-te Element enthalten - und somit vorher nicht schon gezählt worden sind). Da nach Voraussetzung [mm] $G_n=U_n$ [/mm] ist, folgt [mm] $G_{n+1}=U_{n+1}$. [/mm]
Bem: Du kannst dies, unter Verwendung der Beziehung [mm] $\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1}$ [/mm] auch etwas formaler zeigen:

[mm]G_{n+1}=\green{\binom{n+1}{0}}+\blue{\binom{n+1}{2}}+\red{\binom{n+1}{4}}+\cdots=\green{\binom{n}{0}}+\blue{\binom{n}{1}+\binom{n}{2}}+\red{\binom{n}{3}+\binom{n}{4}}+\cdots=G_n+U_n[/mm]

und
[mm]U_{n+1}=\green{\binom{n+1}{1}}+\blue{\binom{n+1}{3}}+\red{\binom{n+1}{5}}+\cdots=\green{\binom{n}{0}+\binom{n}{1}}+\blue{\binom{n}{2}+\binom{n}{3}}+\red{\binom{n}{4}+\binom{n}{5}}+\cdots=G_n+U_n[/mm]


Induktionsschluss: für alle [mm] $n\geq [/mm] 1$ gilt [mm] $G_n=U_n$ [/mm] (Anzahl der Teilmengen mit gerader Anzahl Elemente ist gleich Anzahl der Teilmengen mit ungerader Anzahl Elemente).



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]