matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenvollständige Räume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - vollständige Räume
vollständige Räume < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Räume: hey
Status: (Frage) beantwortet Status 
Datum: 20:01 Di 24.05.2011
Autor: looney_tune

Aufgabe
Seien (X; dx) und (Y; dy) vollständige Räume. Man zeige, dass
dann auch das kartesische Produkt der beiden Räume vollständig ist.

Wie kann ich denn zeigen, dass diese Räume vollständig sind und das auch noch auf das kartesische Produkt übertragen?

Danke

        
Bezug
vollständige Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Di 24.05.2011
Autor: rainerS

Hallo!

> Seien (X; dx) und (Y; dy) vollständige Räume. Man zeige,
> dass
>  dann auch das kartesische Produkt der beiden Räume
> vollständig ist.
>  Wie kann ich denn zeigen, dass diese Räume vollständig
> sind

Das sollst du nicht zeigen, das ist die Voraussetzung.

> und das auch noch auf das kartesische Produkt
> übertragen?

Betrachte ein Cauchyfolge [mm] $z_n=(x_n,y_n)$ [/mm] in [mm] $X\times [/mm] Y$. Überlege dir, dass [mm] $x_n$ [/mm] und [mm] $y_n$ [/mm] Cauchyfolgen in X bzw Y sind, die nach Voraussetzung konvergieren.

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]