x^2y'' + 3xy' + 5y = x < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | $$ y(x) = [mm] x^2 \frac{d^2y}{dx^2} [/mm] + [mm] 3x\frac{dy}{dx} [/mm] + 5y = x $$
Homogene & Allgemeine Lösung sowie Partikuläre Lösung für $y(1) = y'(1) = 0$ |
Da ich mir mit DGL's immer noch etwas unsicher bin wäre es super, wenn mal jemand über meine Lösung drübergucken und evtl. verbessern könnte.
Homogene Lösung:
[mm] $m^2 [/mm] + 3m + 5 = 0 [mm] \Rightarrow m_{1,2} [/mm] = [mm] \frac{1}{2} [/mm] (-3 [mm] \pm i\sqrt{11})$\\
[/mm]
[mm] $\Rightarrow x^{m_{1,2}} [/mm] = [mm] x^{-\frac{3}{2}} \cdot x^{\pm \frac{i}{2} \sqrt{11}} [/mm] = [mm] x^{-\frac{3}{2}} \cdot \exp((\pm \frac{\sqrt{11}}{2} \ln [/mm] x) i) [mm] $\\
[/mm]
Darauf die Euler-Formel angewendet: [mm] \\
[/mm]
[mm] $x^{m_{1,2}} [/mm] = [mm] x^{-\frac{3}{2}} \cdot [/mm] ( [mm] \cos (\frac{\sqrt{11}}{2} \ln [/mm] x) [mm] \pm [/mm] i [mm] \sin (\frac{\sqrt{11}}{2} \ln [/mm] x))$
$$ [mm] \Rightarrow y_h [/mm] = [mm] x^{-\frac{3}{2}} \cdot [/mm] ((A [mm] \cos (\frac{\sqrt{11}}{2} \ln [/mm] x) + B [mm] \sin (\frac{\sqrt{11}}{2} \ln [/mm] x)) $$
Allgemeine Lösung:
$y = [mm] Cx\ln [/mm] x;~ y' = [mm] C\ln [/mm] x + C;~ y'' = [mm] \frac{C}{x}$\\
[/mm]
[mm] $\Rightarrow [/mm] y(x) = [mm] x^2 \cdot \frac{C}{x} [/mm] + 3x [mm] \cdot (C\ln [/mm] x + C) + [mm] 5\cdot Cx\ln [/mm] x = Cx + [mm] 3Cx\ln [/mm] x + 3Cx + [mm] 5Cx\ln [/mm] x = 4Cx + [mm] 8Cx\ln [/mm] x = [mm] x$\\
[/mm]
Also $C = [mm] \frac{1}{4 + 8\ln x}$
[/mm]
$$ y = [mm] x^{-\frac{3}{2}} \cdot [/mm] ((A [mm] \cos (\frac{\sqrt{11}}{2} \ln [/mm] x) + B [mm] \sin (\frac{\sqrt{11}}{2} \ln [/mm] x)) + [mm] \frac{1}{4 + 8\ln x}$$
[/mm]
Das ganze soll jetzt noch das Anfangswertproblem lösen: [mm] \\
[/mm]
$y(1) = A + [mm] \frac{1}{4} [/mm] = 0 [mm] \Rightarrow [/mm] A = [mm] -\frac{1}{4}$\\
[/mm]
$y'(x) = [mm] -\frac{3}{2} x^{-\frac{5}{2}} \cdot [/mm] ((A [mm] \cos (\frac{\sqrt{11}}{2} \ln [/mm] x) + B [mm] \sin (\frac{\sqrt{11}}{2} \ln [/mm] x)) + [mm] x^{-\frac{3}{2}} \cdot [/mm] ((-A [mm] \sin (\frac{\sqrt{11}}{2} \ln [/mm] x) [mm] \frac{1}{x} [/mm] + B [mm] \cos (\frac{\sqrt{11}}{2} \ln [/mm] x) [mm] \frac{1}{x}) [/mm] - [mm] \frac{8x^{-1}}{(4+8\ln x)^2}$ \\
[/mm]
$y'(1) = [mm] -\frac{3}{2} \cdot [/mm] 1 [mm] \cdot [/mm] (A+0) + 1 [mm] \cdot [/mm] (0+B) - [mm] \frac{8}{16} [/mm] = [mm] -\frac{3}{2}A [/mm] + B - [mm] \frac{8}{16} [/mm] = [mm] -\frac{3}{8} [/mm] + B - [mm] \frac{4}{8} [/mm] = 0 [mm] \Rightarrow [/mm] B = [mm] \frac{7}{8}$\\
[/mm]
Damit hätten wir als Lösung der Aufgabe:
$$y(x) = [mm] x^{-\frac{3}{2}} \cdot ((\frac{1}{4} \cos (\frac{\sqrt{11}}{2} \ln [/mm] x) + [mm] \frac{7}{8} \sin (\frac{\sqrt{11}}{2} \ln [/mm] x))$$
Vielen Dank, Gruß GB
|
|
|
|
Hallo GreatBritain,
> [mm]y(x) = x^2 \frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + 5y = x[/mm]
>
> Homogene & Allgemeine Lösung sowie Partikuläre Lösung
> für [mm]y(1) = y'(1) = 0[/mm]
> Da ich mir mit DGL's immer noch
> etwas unsicher bin wäre es super, wenn mal jemand über
> meine Lösung drübergucken und evtl. verbessern könnte.
>
> Homogene Lösung:
>
> [mm]m^2 + 3m + 5 = 0 \Rightarrow m_{1,2} = \frac{1}{2} (-3 \pm i\sqrt{11})[/mm][mm] \\[/mm]
>
> [mm]\Rightarrow x^{m_{1,2}} = x^{-\frac{3}{2}} \cdot x^{\pm \frac{i}{2} \sqrt{11}} = x^{-\frac{3}{2}} \cdot \exp((\pm \frac{\sqrt{11}}{2} \ln x) i) [/mm][mm] \\[/mm]
>
> Darauf die Euler-Formel angewendet: [mm]\\[/mm]
> [mm]x^{m_{1,2}} = x^{-\frac{3}{2}} \cdot ( \cos (\frac{\sqrt{11}}{2} \ln x) \pm i \sin (\frac{\sqrt{11}}{2} \ln x))[/mm]
>
> [mm]\Rightarrow y_h = x^{-\frac{3}{2}} \cdot ((A \cos (\frac{\sqrt{11}}{2} \ln x) + B \sin (\frac{\sqrt{11}}{2} \ln x))[/mm]
Hier funktioniert der Ansatz [mm]y=e^{mx}[/mm] nicht.
Dies ist eine Eulersche Differentialgleichung,
deren homogene Lösung mit dem Ansatz [mm]y=x^{m}[/mm] gelöst werden kann.
>
> Allgemeine Lösung:
>
> [mm]y = Cx\ln x;~ y' = C\ln x + C;~ y'' = \frac{C}{x}[/mm][mm] \\[/mm]
>
> [mm]\Rightarrow y(x) = x^2 \cdot \frac{C}{x} + 3x \cdot (C\ln x + C) + 5\cdot Cx\ln x = Cx + 3Cx\ln x + 3Cx + 5Cx\ln x = 4Cx + 8Cx\ln x = x[/mm][mm] \\[/mm]
>
> Also [mm]C = \frac{1}{4 + 8\ln x}[/mm]
> [mm]y = x^{-\frac{3}{2}} \cdot ((A \cos (\frac{\sqrt{11}}{2} \ln x) + B \sin (\frac{\sqrt{11}}{2} \ln x)) + \frac{1}{4 + 8\ln x}[/mm]
>
> Das ganze soll jetzt noch das Anfangswertproblem lösen:
> [mm]\\[/mm]
> [mm]y(1) = A + \frac{1}{4} = 0 \Rightarrow A = -\frac{1}{4}[/mm][mm] \\[/mm]
>
> [mm]y'(x) = -\frac{3}{2} x^{-\frac{5}{2}} \cdot ((A \cos (\frac{\sqrt{11}}{2} \ln x) + B \sin (\frac{\sqrt{11}}{2} \ln x)) + x^{-\frac{3}{2}} \cdot ((-A \sin (\frac{\sqrt{11}}{2} \ln x) \frac{1}{x} + B \cos (\frac{\sqrt{11}}{2} \ln x) \frac{1}{x}) - \frac{8x^{-1}}{(4+8\ln x)^2}[/mm]
> [mm]\\[/mm]
> [mm]y'(1) = -\frac{3}{2} \cdot 1 \cdot (A+0) + 1 \cdot (0+B) - \frac{8}{16} = -\frac{3}{2}A + B - \frac{8}{16} = -\frac{3}{8} + B - \frac{4}{8} = 0 \Rightarrow B = \frac{7}{8}[/mm][mm] \\[/mm]
>
> Damit hätten wir als Lösung der Aufgabe:
> [mm]y(x) = x^{-\frac{3}{2}} \cdot ((\frac{1}{4} \cos (\frac{\sqrt{11}}{2} \ln x) + \frac{7}{8} \sin (\frac{\sqrt{11}}{2} \ln x))[/mm]
>
> Vielen Dank, Gruß GB
Gruss
MathePower
|
|
|
|
|
> Hallo GreatBritain,
>
> > [mm]y(x) = x^2 \frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + 5y = x[/mm]
>
> >
> > Homogene & Allgemeine Lösung sowie Partikuläre Lösung
> > für [mm]y(1) = y'(1) = 0[/mm]
> > Da ich mir mit DGL's immer noch
> > etwas unsicher bin wäre es super, wenn mal jemand über
> > meine Lösung drübergucken und evtl. verbessern könnte.
> >
> > Homogene Lösung:
> >
> > [mm]m^2 + 3m + 5 = 0 \Rightarrow m_{1,2} = \frac{1}{2} (-3 \pm i\sqrt{11})[/mm][mm] \\[/mm]
>
> >
> > [mm]\Rightarrow x^{m_{1,2}} = x^{-\frac{3}{2}} \cdot x^{\pm \frac{i}{2} \sqrt{11}} = x^{-\frac{3}{2}} \cdot \exp((\pm \frac{\sqrt{11}}{2} \ln x) i)[/mm][mm] \\[/mm]
>
> >
> > Darauf die Euler-Formel angewendet: [mm]\\[/mm]
> > [mm]x^{m_{1,2}} = x^{-\frac{3}{2}} \cdot ( \cos (\frac{\sqrt{11}}{2} \ln x) \pm i \sin (\frac{\sqrt{11}}{2} \ln x))[/mm]
>
> >
> > [mm]\Rightarrow y_h = x^{-\frac{3}{2}} \cdot ((A \cos (\frac{\sqrt{11}}{2} \ln x) + B \sin (\frac{\sqrt{11}}{2} \ln x))[/mm]
>
>
> Hier funktioniert der Ansatz [mm]y=e^{mx}[/mm] nicht.
>
> Dies ist eine
> Eulersche Differentialgleichung,
> deren homogene Lösung mit dem Ansatz [mm]y=x^{m}[/mm] gelöst
> werden kann.
>
>
öhm - das habe ich doch aber eigentlich auch gemacht? Die Exponentialfunktion habe ich ja eher verwendet um die imaginäre Potenz "wegzukriegen", unter verwendung $x = [mm] e^{lnx}$, [/mm] und dann die Eulerformel [mm] $e^{ix}= [/mm] cos(x) + i sin(x)$ verwendet. Aber grundsätzlich ist mein Ansatz ja [mm] $y=x^{m_{1,2}} [/mm] = [mm] \ldots$
[/mm]
Ist aber gut möglich, dass meine Rechnung etwas umständlich und daher verwirrend ist...
Gruß GB
> >
> > Allgemeine Lösung:
> >
> > [mm]y = Cx\ln x;~ y' = C\ln x + C;~ y'' = \frac{C}{x}[/mm][mm] \\[/mm]
> >
> > [mm]\Rightarrow y(x) = x^2 \cdot \frac{C}{x} + 3x \cdot (C\ln x + C) + 5\cdot Cx\ln x = Cx + 3Cx\ln x + 3Cx + 5Cx\ln x = 4Cx + 8Cx\ln x = x[/mm][mm] \\[/mm]
>
> >
> > Also [mm]C = \frac{1}{4 + 8\ln x}[/mm]
> > [mm]y = x^{-\frac{3}{2}} \cdot ((A \cos (\frac{\sqrt{11}}{2} \ln x) + B \sin (\frac{\sqrt{11}}{2} \ln x)) + \frac{1}{4 + 8\ln x}[/mm]
>
> >
> > Das ganze soll jetzt noch das Anfangswertproblem lösen:
> > [mm]\\[/mm]
> > [mm]y(1) = A + \frac{1}{4} = 0 \Rightarrow A = -\frac{1}{4}[/mm][mm] \\[/mm]
>
> >
> > [mm]y'(x) = -\frac{3}{2} x^{-\frac{5}{2}} \cdot ((A \cos (\frac{\sqrt{11}}{2} \ln x) + B \sin (\frac{\sqrt{11}}{2} \ln x)) + x^{-\frac{3}{2}} \cdot ((-A \sin (\frac{\sqrt{11}}{2} \ln x) \frac{1}{x} + B \cos (\frac{\sqrt{11}}{2} \ln x) \frac{1}{x}) - \frac{8x^{-1}}{(4+8\ln x)^2}[/mm]
> > [mm]\\[/mm]
> > [mm]y'(1) = -\frac{3}{2} \cdot 1 \cdot (A+0) + 1 \cdot (0+B) - \frac{8}{16} = -\frac{3}{2}A + B - \frac{8}{16} = -\frac{3}{8} + B - \frac{4}{8} = 0 \Rightarrow B = \frac{7}{8}[/mm][mm] \\[/mm]
>
> >
> > Damit hätten wir als Lösung der Aufgabe:
> > [mm]y(x) = x^{-\frac{3}{2}} \cdot ((\frac{1}{4} \cos (\frac{\sqrt{11}}{2} \ln x) + \frac{7}{8} \sin (\frac{\sqrt{11}}{2} \ln x))[/mm]
>
> >
> > Vielen Dank, Gruß GB
>
>
>
> Gruss
> MathePower
|
|
|
|
|
Hallo GreatBritain,
> > Dies ist eine
> >
> Eulersche Differentialgleichung,
> > deren homogene Lösung mit dem Ansatz [mm]y=x^{m}[/mm] gelöst
> > werden kann.
> >
> >
> öhm - das habe ich doch aber eigentlich auch gemacht? Die
Wenn Du das gemacht hättest,
dann sähe die charakteristische Gleichung so aus:
[mm]m*\left(m-1\right)+3*m+5=0[/mm]
[mm]\gdw m^{2}+2*m+5=0[/mm]
> Exponentialfunktion habe ich ja eher verwendet um die
> imaginäre Potenz "wegzukriegen", unter verwendung [mm]x = e^{lnx}[/mm],
> und dann die Eulerformel [mm]e^{ix}= cos(x) + i sin(x)[/mm]
> verwendet. Aber grundsätzlich ist mein Ansatz ja
> [mm]y=x^{m_{1,2}} = \ldots[/mm]
>
> Ist aber gut möglich, dass meine Rechnung etwas
> umständlich und daher verwirrend ist...
>
> Gruß GB
>
Gruss
MathePower
|
|
|
|
|
ush - danke, jetzt hab ich verstanden wo der fehler liegt!!
ich werd mich gleich nochmal dran machen!
|
|
|
|
|
na, da werden die zahlen ja gleich viel schöner
Habe jetzt entsprechend substituiert und komme auf die von dir bereits angegebene charak. Gleichung.
Homogene Lösung:
[mm] $m^2 [/mm] + 2m + 5 = 0 [mm] \Rightarrow m_{1,2} [/mm] = -1 [mm] \pm [/mm] 2i [mm] $\\
[/mm]
[mm] $\Rightarrow x^{m_{1,2}} [/mm] = [mm] x^{-1} \cdot x^{\pm 2i} [/mm] = [mm] x^{-1} \cdot \exp((\pm [/mm] 2i ln(x)) [mm] $\\
[/mm]
Darauf die Euler-Formel [mm] angwendet:\\
[/mm]
[mm] $x^{m_{1,2}} [/mm] = [mm] x^{-1} \cdot [/mm] ( [mm] \cos [/mm] (2 [mm] \ln [/mm] x) [mm] \pm [/mm] i [mm] \sin [/mm] (2 [mm] \ln [/mm] x))$
$$ [mm] \Rightarrow y_h [/mm] = [mm] x^{-1} \cdot [/mm] ((A [mm] \cos [/mm] (2 [mm] \ln [/mm] x) + B [mm] \sin [/mm] (2 [mm] \ln [/mm] x)) $$
ok, um nun die partikuläre Lösung zu bekommen würde ich folgenden Ansatz verwenden:
$y = [mm] Cx\ln x;~y'=C\ln [/mm] x + C; y'' = [mm] \frac{C}{x}$
[/mm]
Kann ich damit weiter machen oder bin ich dann schon wieder auf dem falschen Weg...?
Danke & Gruß, GB
|
|
|
|
|
Hallo GreatBritain,
> na, da werden die zahlen ja gleich viel schöner
>
> Habe jetzt entsprechend substituiert und komme auf die von
> dir bereits angegebene charak. Gleichung.
>
> Homogene Lösung:
>
> [mm]m^2 + 2m + 5 = 0 \Rightarrow m_{1,2} = -1 \pm 2i[/mm][mm] \\[/mm]
>
> [mm]\Rightarrow x^{m_{1,2}} = x^{-1} \cdot x^{\pm 2i} = x^{-1} \cdot \exp((\pm 2i ln(x)) [/mm][mm] \\[/mm]
>
> Darauf die Euler-Formel [mm]angwendet:\\[/mm]
> [mm]x^{m_{1,2}} = x^{-1} \cdot ( \cos (2 \ln x) \pm i \sin (2 \ln x))[/mm]
>
> [mm]\Rightarrow y_h = x^{-1} \cdot ((A \cos (2 \ln x) + B \sin (2 \ln x))[/mm]
>
> ok, um nun die partikuläre Lösung zu bekommen würde ich
> folgenden Ansatz verwenden:
> [mm]y = Cx\ln x;~y'=C\ln x + C; y'' = \frac{C}{x}[/mm]
>
> Kann ich damit weiter machen oder bin ich dann schon wieder
> auf dem falschen Weg...?
Nun, da die Störfunktion eine Polynom ersten Grades ist,
wähle hier den Ansatz: [mm]y_{p}=A*x+B[/mm]
>
> Danke & Gruß, GB
Gruss
MathePower
|
|
|
|