matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationzweidimensionale Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - zweidimensionale Integration
zweidimensionale Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zweidimensionale Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:52 Di 22.10.2013
Autor: xsuernx

Aufgabe 1
Berechnen Sie den Flächeninhalt [mm] $\phi(A)$ [/mm] über dem zweidimensionalen Integrationsbereich
[mm] §A:=\left[ 0,5 \right]\times \left[ 1,6 \right]=\left\{ \left( x,y \right)|0\le x\le 5,1\le y \le 6 \right\}\subseteq \IR^2 [/mm] .

Aufgabe 2
Berechnen Sie das Integral der Funktion $f(x,y):a [mm] \rightarrow \IR$ [/mm] über dem Integrationsbereich A:
[mm] $f(x,y)=x^3+\bruch{1}{3}y [/mm] , [mm] A=\left[ 0,1 \right]\times \left[ 1,3 \right] [/mm]

Hallo, als Ansatz habe ich einen Satz gefunden, mit dem es gehen sollte:
" Es sei die Funktion [mm] $f:\left[ a,b \right]\times \left[ c,d \right]=\left \rightarro$ [/mm] integrierbar. Außerdem exestiere für jedes [mm] $x\in \left[a,b \right]$ [/mm] das Integral [mm] $F(x)=\int_{a}^{b} f(x,y)\, [/mm] dx$ und für jedes [mm] $y\in \left[c,d \right]$ [/mm] das Integral [mm] $G(y)=\int_{c}^{d} f(x,y)\, [/mm] dy$ dann gilt:
[mm] $\int_{\left[ a,b \right]\times \left[ c,d \right]\}^{}$ [/mm]  f(x), dx [mm] $=\int_{a}^{b}\int_{c}^{d} [/mm] f(x,y),dy,dx .


aber was soll ich denn da berechnen? ich könnte es doch nur in ein doppeltes Integral umschreiben, wie es im Satz ganz unten steht oder?
Bei der zweiten Aufgabe ist es mir ja klar das ist meiner Meinung nach
[mm] $=\int_{0}^{1}\int_{1}^{3} x^3\bruch{1}{3}y [/mm] ,dy,dx$
[mm] $=\int_{1}^{3} 2x^3\bruch{4}{3}y [/mm] ,dx$
[mm] $=\bruch{11}{6}$ [/mm]
aber was zur Hölle soll man bei Aufgabe 1 tun?

Danke schnonmal

        
Bezug
zweidimensionale Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 Di 22.10.2013
Autor: Richie1401

Hallo,

den Flächeninhalt über ein Gebiet A ist die Integration über die Funktion f(x,y)=1 über das Gebiet. Also:

[mm] |A|=\int_{A}1dydx [/mm]


> Berechnen Sie den Flächeninhalt [mm]\phi(A)[/mm] über dem
> zweidimensionalen Integrationsbereich
> [mm]§A:=\left[ 0,5 \right]\times \left[ 1,6 \right]=\left\{ \left( x,y \right)|0\le x\le 5,1\le y \le 6 \right\}\subseteq \IR^2[/mm]
> .
>  Berechnen Sie das Integral der Funktion [mm]f(x,y):a \rightarrow \IR[/mm]
> über dem Integrationsbereich A:
>  [mm]$f(x,y)=x^3+\bruch{1}{3}y[/mm] , [mm]A=\left[ 0,1 \right]\times \left[ 1,3 \right][/mm]
>  
> Hallo, als Ansatz habe ich einen Satz gefunden, mit dem es
> gehen sollte:
>  " Es sei die Funktion [mm]f:\left[ a,b \right]\times \left[ c,d \right]=\left \rightarro[/mm]
> integrierbar. Außerdem exestiere für jedes [mm]x\in \left[a,b \right][/mm]
> das Integral [mm]F(x)=\int_{a}^{b} f(x,y)\, dx[/mm] und für jedes
> [mm]y\in \left[c,d \right][/mm] das Integral [mm]G(y)=\int_{c}^{d} f(x,y)\, dy[/mm]
> dann gilt:
>  [mm]$\int_{\left[ a,b \right]\times \left[ c,d \right]\}^{}$[/mm]  
> f(x), dx [mm]$=\int_{a}^{b}\int_{c}^{d}[/mm] f(x,y),dy,dx .
>  
>
> aber was soll ich denn da berechnen? ich könnte es doch
> nur in ein doppeltes Integral umschreiben, wie es im Satz
> ganz unten steht oder?
>  Bei der zweiten Aufgabe ist es mir ja klar das ist meiner
> Meinung nach
> [mm]=\int_{0}^{1}\int_{1}^{3} x^3\bruch{1}{3}y ,dy,dx[/mm]
>  
> [mm]=\int_{1}^{3} 2x^3\bruch{4}{3}y ,dx[/mm]
>  [mm]=\bruch{11}{6}[/mm]

Du integrierst zunächst über y ab. Warum ist da also noch ein y vorhanden, obwohl du schon integriert hast?

Wo ist denn eigentlich auch das Additionszeichen geblieben? Die Ausgangsfunktion war doch [mm] f(x,y)=x^3+\bruch{1}{3}y [/mm]

>  aber was zur Hölle soll man bei Aufgabe 1 tun?
>  
> Danke schnonmal


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]