matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigeszweistellige relation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - zweistellige relation
zweistellige relation < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zweistellige relation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Do 25.03.2010
Autor: s-jojo

Aufgabe
X ist eine zweielementige Menge
Gib alle Relationen an!

Hi :)

einen Teil vom Lösungsweg versteh ich, dazu gehören die Relationen
[mm] \{\emptyset\},\{a,a\},\{a,b\},\{b,a\},\{b,b\}... [/mm] bis hin zu den Relationen wie [mm] \{(a,a)(a,b)\} [/mm] etc.

(Nur um ganz sicher zu gehen... die Relationen mit einem Element wie [mm] \{a,a\} [/mm] kommen doch dadurch zustande, dass man bei [mm] X\times [/mm] X einmal [mm] \{a,\emptyset\},\{\emptyset,a\} [/mm] wählt, sodass [mm] \{a,a\} [/mm] rauskommt?)

Die anderen Relationen versteh ich dann aber nicht so ganz, z.B. wieso es die Relation [mm] \{(a,a),(a,b),(b,a)\} [/mm] gibt.


Und ich hab auch irgendwo gelesen, dass man die Anzahl von Elementen aus einer Menge nimmt, diese zum Quadrat nimmt und dann war da auch noch was mit der Potenzmenge. (?!?!??!) :( Eigentlich wollte ich ja Ergebnisse durch so eine Formel überprüfen, aber ich versteh das gar nicht! :D


Liebe Grüße
s-jojo

        
Bezug
zweistellige relation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Do 25.03.2010
Autor: angela.h.b.


> X ist eine zweielementige Menge,

[mm] X:=\{a,b\} [/mm]

>  Gib alle Relationen an!

Hallo,

bevor man irgendwas tut, muß klar sein worüber man redet.
Wie ist denn "Relation auf einer Menge X" definiert?

Gruß v. Angela





>  Hi :)
>  
> einen Teil vom Lösungsweg versteh ich, dazu gehören die
> Relationen
> [mm]\{\emptyset\},\{a,a\},\{a,b\},\{b,a\},\{b,b\}...[/mm] bis hin zu
> den Relationen wie [mm]\{(a,a)(a,b)\}[/mm] etc.
>  
> (Nur um ganz sicher zu gehen... die Relationen mit einem
> Element wie [mm]\{a,a\}[/mm] kommen doch dadurch zustande, dass man
> bei [mm]X\times[/mm] X einmal [mm]\{a,\emptyset\},\{\emptyset,a\}[/mm]
> wählt, sodass [mm]\{a,a\}[/mm] rauskommt?)
>  
> Die anderen Relationen versteh ich dann aber nicht so ganz,
> z.B. wieso es die Relation [mm]\{(a,a),(a,b),(b,a)\}[/mm] gibt.
>
>
> Und ich hab auch irgendwo gelesen, dass man die Anzahl von
> Elementen aus einer Menge nimmt, diese zum Quadrat nimmt
> und dann war da auch noch was mit der Potenzmenge.
> (?!?!??!) :( Eigentlich wollte ich ja Ergebnisse durch so
> eine Formel überprüfen, aber ich versteh das gar nicht!
> :D
>  
>
> Liebe Grüße
>  s-jojo


Bezug
                
Bezug
zweistellige relation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 Do 25.03.2010
Autor: s-jojo


> > X ist eine zweielementige Menge,
>  [mm]X:=\{a,b\}[/mm]
>  >  Gib alle Relationen an!
>  
> Hallo,
>  
> bevor man irgendwas tut, muß klar sein worüber man
> redet.
>  Wie ist denn "Relation auf einer Menge X" definiert?
>  
> Gruß v. Angela
>  

Die Def. ist [mm] R\subseteq X\times [/mm] X [mm] :=\{(x,y)|y\in X,z\in X\} [/mm]

Lg,
s-jojo

Bezug
                        
Bezug
zweistellige relation: Antwort
Status: (Antwort) fertig Status 
Datum: 07:37 Fr 26.03.2010
Autor: fred97


> > > X ist eine zweielementige Menge,
>  >  [mm]X:=\{a,b\}[/mm]
>  >  >  Gib alle Relationen an!
>  >  
> > Hallo,
>  >  
> > bevor man irgendwas tut, muß klar sein worüber man
> > redet.
>  >  Wie ist denn "Relation auf einer Menge X" definiert?
>  >  
> > Gruß v. Angela
>  >  
> Die Def. ist [mm]R\subseteq X\times[/mm] X [mm]:=\{(x,y)|y\in X,z\in X\}[/mm]


Fast richtig.

             [mm]R\subseteq X\times[/mm] X [mm]:=\{(x,y)|x\in X,y\in X\}[/mm]


Wenn nun $ [mm] X=\{a,b\} [/mm] $, so ist $ X [mm] \times [/mm] X = [mm] \{ (a,a), (a,b), (b,a), (b,b) \}$ [/mm]

Kannst Du nun alle Relationen angeben ?

FRED

>  
> Lg,
>  s-jojo


Bezug
                                
Bezug
zweistellige relation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:45 Fr 26.03.2010
Autor: s-jojo

Ich glaub jetzt hat's geklickt :D

ich hab dann
[mm] \emptyset, (a,a),(a,b),(b,a),(b,b),\{(a,a),(a,b)\},\{(a,a),(b,a)\},\{(a,a),(b,b)\},\{(b,b),(a,a)\}...\{(a,a),(a,b),(b,a\} [/mm] etc. also insgesamt 16

aber was hat es mit dieser Formel "Anzahl von Elementen zum Quadrat" mit Potenzmenge oder so auf sich? (Das mit der Potenzmenge leuchtet mir nicht ein)


Gruß,
s-jojo

Bezug
                                        
Bezug
zweistellige relation: Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 Fr 26.03.2010
Autor: angela.h.b.


> Ich glaub jetzt hat's geklickt :D
>  
> ich hab dann
> [mm]\emptyset, (a,a),(a,b),(b,a),(b,b),\{(a,a),(a,b)\},\{(a,a),(b,a)\},\{(a,a),(b,b)\},\{(b,b),(a,a)\}...\{(a,a),(a,b),(b,a\}[/mm]
> etc. also insgesamt 16

Hallo,

ja, bis auf daß Du einige Mengenklammern vornehm weggelassen hast, scheint es wirklich geklickt zu haben.

Und daß es geklickt hat, hängt damit zusammen, daß Du inzwischen mal notiert hast, was eine Relation überhaupt ist, Dich also mit der Definition beschäftigt hast.

Merke: viele der Aufgaben, die Dir jetzt und in Zukunft gestellt werden, verlangen keinerlei mathematische Beseeltheit, sondern sie prüfen lediglich, ob Definitionen und Sätze bekannt sind.
Also: bei Ratlosigkeit bei Aufgaben immer zurück zur Quelle - den Definitionen.
Wenn Du letztere nicht kannst, dann kannst Du gleich einpacken - die Zeit, die Du diffus mit Aufgaben rumwurschtelst, ist in der nächsten Kneipe besser verbracht...

>
> aber was hat es mit dieser Formel "Anzahl von Elementen zum
> Quadrat" mit Potenzmenge oder so auf sich? (Das mit der
> Potenzmenge leuchtet mir nicht ein)

Nehmen wir eine Menge X mit n Elementen.
Wieviele Elemente hat [mm] X\times [/mm] X?

Die Menge aller Relationen auf X ist die Potenzmenge von [mm] X\times [/mm] X. (Was ist eine Potenzmenge?)


Wenn eine Menge k Elemente hat, dann enthält ihre Potenzmenge wieviele Elemente?

Gruß v. Angela

>  
>
> Gruß,
>  s-jojo


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]