zweistellige relation < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:08 Do 25.03.2010 | Autor: | s-jojo |
Aufgabe | X ist eine zweielementige Menge
Gib alle Relationen an! |
Hi :)
einen Teil vom Lösungsweg versteh ich, dazu gehören die Relationen
[mm] \{\emptyset\},\{a,a\},\{a,b\},\{b,a\},\{b,b\}... [/mm] bis hin zu den Relationen wie [mm] \{(a,a)(a,b)\} [/mm] etc.
(Nur um ganz sicher zu gehen... die Relationen mit einem Element wie [mm] \{a,a\} [/mm] kommen doch dadurch zustande, dass man bei [mm] X\times [/mm] X einmal [mm] \{a,\emptyset\},\{\emptyset,a\} [/mm] wählt, sodass [mm] \{a,a\} [/mm] rauskommt?)
Die anderen Relationen versteh ich dann aber nicht so ganz, z.B. wieso es die Relation [mm] \{(a,a),(a,b),(b,a)\} [/mm] gibt.
Und ich hab auch irgendwo gelesen, dass man die Anzahl von Elementen aus einer Menge nimmt, diese zum Quadrat nimmt und dann war da auch noch was mit der Potenzmenge. (?!?!??!) :( Eigentlich wollte ich ja Ergebnisse durch so eine Formel überprüfen, aber ich versteh das gar nicht! :D
Liebe Grüße
s-jojo
|
|
|
|
> X ist eine zweielementige Menge,
[mm] X:=\{a,b\}
[/mm]
> Gib alle Relationen an!
Hallo,
bevor man irgendwas tut, muß klar sein worüber man redet.
Wie ist denn "Relation auf einer Menge X" definiert?
Gruß v. Angela
> Hi :)
>
> einen Teil vom Lösungsweg versteh ich, dazu gehören die
> Relationen
> [mm]\{\emptyset\},\{a,a\},\{a,b\},\{b,a\},\{b,b\}...[/mm] bis hin zu
> den Relationen wie [mm]\{(a,a)(a,b)\}[/mm] etc.
>
> (Nur um ganz sicher zu gehen... die Relationen mit einem
> Element wie [mm]\{a,a\}[/mm] kommen doch dadurch zustande, dass man
> bei [mm]X\times[/mm] X einmal [mm]\{a,\emptyset\},\{\emptyset,a\}[/mm]
> wählt, sodass [mm]\{a,a\}[/mm] rauskommt?)
>
> Die anderen Relationen versteh ich dann aber nicht so ganz,
> z.B. wieso es die Relation [mm]\{(a,a),(a,b),(b,a)\}[/mm] gibt.
>
>
> Und ich hab auch irgendwo gelesen, dass man die Anzahl von
> Elementen aus einer Menge nimmt, diese zum Quadrat nimmt
> und dann war da auch noch was mit der Potenzmenge.
> (?!?!??!) :( Eigentlich wollte ich ja Ergebnisse durch so
> eine Formel überprüfen, aber ich versteh das gar nicht!
> :D
>
>
> Liebe Grüße
> s-jojo
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:05 Do 25.03.2010 | Autor: | s-jojo |
> > X ist eine zweielementige Menge,
> [mm]X:=\{a,b\}[/mm]
> > Gib alle Relationen an!
>
> Hallo,
>
> bevor man irgendwas tut, muß klar sein worüber man
> redet.
> Wie ist denn "Relation auf einer Menge X" definiert?
>
> Gruß v. Angela
>
Die Def. ist [mm] R\subseteq X\times [/mm] X [mm] :=\{(x,y)|y\in X,z\in X\}
[/mm]
Lg,
s-jojo
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:37 Fr 26.03.2010 | Autor: | fred97 |
> > > X ist eine zweielementige Menge,
> > [mm]X:=\{a,b\}[/mm]
> > > Gib alle Relationen an!
> >
> > Hallo,
> >
> > bevor man irgendwas tut, muß klar sein worüber man
> > redet.
> > Wie ist denn "Relation auf einer Menge X" definiert?
> >
> > Gruß v. Angela
> >
> Die Def. ist [mm]R\subseteq X\times[/mm] X [mm]:=\{(x,y)|y\in X,z\in X\}[/mm]
Fast richtig.
[mm]R\subseteq X\times[/mm] X [mm]:=\{(x,y)|x\in X,y\in X\}[/mm]
Wenn nun $ [mm] X=\{a,b\} [/mm] $, so ist $ X [mm] \times [/mm] X = [mm] \{ (a,a), (a,b), (b,a), (b,b) \}$
[/mm]
Kannst Du nun alle Relationen angeben ?
FRED
>
> Lg,
> s-jojo
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 08:45 Fr 26.03.2010 | Autor: | s-jojo |
Ich glaub jetzt hat's geklickt :D
ich hab dann
[mm] \emptyset, (a,a),(a,b),(b,a),(b,b),\{(a,a),(a,b)\},\{(a,a),(b,a)\},\{(a,a),(b,b)\},\{(b,b),(a,a)\}...\{(a,a),(a,b),(b,a\} [/mm] etc. also insgesamt 16
aber was hat es mit dieser Formel "Anzahl von Elementen zum Quadrat" mit Potenzmenge oder so auf sich? (Das mit der Potenzmenge leuchtet mir nicht ein)
Gruß,
s-jojo
|
|
|
|
|
> Ich glaub jetzt hat's geklickt :D
>
> ich hab dann
> [mm]\emptyset, (a,a),(a,b),(b,a),(b,b),\{(a,a),(a,b)\},\{(a,a),(b,a)\},\{(a,a),(b,b)\},\{(b,b),(a,a)\}...\{(a,a),(a,b),(b,a\}[/mm]
> etc. also insgesamt 16
Hallo,
ja, bis auf daß Du einige Mengenklammern vornehm weggelassen hast, scheint es wirklich geklickt zu haben.
Und daß es geklickt hat, hängt damit zusammen, daß Du inzwischen mal notiert hast, was eine Relation überhaupt ist, Dich also mit der Definition beschäftigt hast.
Merke: viele der Aufgaben, die Dir jetzt und in Zukunft gestellt werden, verlangen keinerlei mathematische Beseeltheit, sondern sie prüfen lediglich, ob Definitionen und Sätze bekannt sind.
Also: bei Ratlosigkeit bei Aufgaben immer zurück zur Quelle - den Definitionen.
Wenn Du letztere nicht kannst, dann kannst Du gleich einpacken - die Zeit, die Du diffus mit Aufgaben rumwurschtelst, ist in der nächsten Kneipe besser verbracht...
>
> aber was hat es mit dieser Formel "Anzahl von Elementen zum
> Quadrat" mit Potenzmenge oder so auf sich? (Das mit der
> Potenzmenge leuchtet mir nicht ein)
Nehmen wir eine Menge X mit n Elementen.
Wieviele Elemente hat [mm] X\times [/mm] X?
Die Menge aller Relationen auf X ist die Potenzmenge von [mm] X\times [/mm] X. (Was ist eine Potenzmenge?)
Wenn eine Menge k Elemente hat, dann enthält ihre Potenzmenge wieviele Elemente?
Gruß v. Angela
>
>
> Gruß,
> s-jojo
|
|
|
|