matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteVorkurszettel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Vorkurszettel
Kursdaten anzeigenListe aller VorkurseDruckansicht
Dietlind Bäro
Daniel Metzsch
www.matheraum.de
Mathe für's ABI 2008
Aufgabenblatt 1
Abgabe: Do 15.11.2007 23:00
01.11.2007
Aufgabe 1
Bearbeiten Sie die Aufgabenteile. Beschreiben Sie dabei Ihre Vorgehensweise und kommentieren
Sie Ihre Lösungen. Die Qualität der textlichen Begleitung wird mitbewertet.

1. Pyramide (Grundkurs)

In einem dreidimensionalen, kartesischen Koordinatensystem sind die drei Punkte A(1|1|1), B(3|3|1) und C(0|4|5) sowie die Gerade $ g:\overrightarrow{x}=\vektor{-1\\2\\13}+r\cdot{}\vektor{5\\-3\\-17}, r\in\IR $ gegeben.

a) Die Punkte A, B und C bilden ein Dreieck. Weisen Sie nach, dass dieses Dreieck gleichschenklig ist. Berechnen Sie die Größe der Innenwinkel und den Flächeninhalt des Dreiecks.

b) Die Punkte A, B und C sind in einer Ebene E enthalten. Bestimmen Sie eine Koordinatengleichung von E. (Mögliche Lösung zur Kontrolle Ihrer Rechnung: E: x – y + z = 1)

c) Der Punkt S(6|-2|8) ist die Spitze einer Pyramide mit der Grundfläche ABC. Stellen Sie die Pyramide und die Gerade g graphisch dar. Benutzen Sie dafür das beigefügte Koordinatensystem. Bestimmen Sie das Volumen der Pyramide.

d) Untersuchen Sie, ob g die Kante AS der Pyramide schneidet.

e) Für jedes $ t\in\IR $ ist eine Ebene $ E_{t}:t\cdot{}x+(t-2)y+z=1 $ gegeben.
Ermitteln Sie eine Gleichung der Schnittgeraden der Ebenen $ E_{1} $ und $ E_{2}. $ Berechnen Sie den Wert von t, für den $ E_{t} $ parallel zu g ist.

2. Dach (Leistungskurs)

[Dateianhang]

a) Geben Sie für die vier Wandebenen $ E_{vorne} $ , $ E_{hinten} $ , $ E_{links} $ und $ E_{rechts} $ und für die zwei Ebenen $ E_{1} $ und $ E_{2} $ der Dachschrägen jeweils eine Gleichung in Normalenform an und berechnen Sie das Maß des Winkels zwischen $ E_{1} $ und $ E_{2}. $

b) Bestimmen Sie das Volumen des Hauses.

c) Berechnen Sie die Länge der Antenne von der Spitze M bis zur Dachschräge.

d) Untersuchen Sie, ob die Antennenspitze M vom Punkt P(3|1|0) sichtbar ist.

e) Die Sonne scheint in Richtung $ \overrightarrow{v}=\vektor{2\\1\\z}, $ z<0. M' ist der Schatten der Antennenspitze M. Bestimmen Sie die Koordinaten von M′ in Abhängigkeit von z, führen Sie eine sinnvolle Fallunterscheidung durch.


Viel Erfolg.



Aufgaben entnommen aus:
[]http://www.berlin.de/sen/bildung/bildungswege/schulabschluesse/

Kursdaten anzeigenListe aller VorkurseDruckansicht
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]