matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseitePunktprobe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Punktprobe
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Punktprobe

Wann liegt ein Punkt D auf einer durch A, B, C gegebenen Ebene?

Gegeben seien  A (-1|2|2) mit dem Ortsvektor $ \vec{a} $, B (-4|6|3), C (2|-2|5).
Diese drei Punkte bilden also eine Ebene:
$ \vec{x} = \vec{a} + r\cdot{}\overrightarrow{AB} + s \cdot{} \overrightarrow{AC} $

Wenn nun ein Punkt D auf dieser Ebene liegen soll, müssen seine Koordinaten die Ebenengleichung erfüllen,
das bedeutet, es muss zwei reelle Zahlen r, s geben, so dass gilt:
$ \vec{d} = \vec{a} + r\cdot{}\overrightarrow{AB} + s \cdot{} \overrightarrow{AC} $
$ \gdw \vec{d} - \vec{a} = \overrightarrow{AD}= r\cdot{}\overrightarrow{AB} + s \cdot{} \overrightarrow{AC} $

die letzte Gleichung kann man auch so beschreiben: der Vektor $ \overrightarrow{AD} $ muss sich aus den beiden anderen Vektoren linear kombinieren lassen oder durch eine Linearkombination beschreiben lassen.

Konkret mit D(-7|10|0):

$ \vektor{-7\\10\\0}-\vektor{-1\\2\\2}=r\cdot{}(\vektor{-4\\6\\3}-\vektor{-1\\2\\2}) + s\cdot{}(\vektor{2\\-2\\5}-\vektor{-1\\2\\2}) $
Die Komponenten fasst man zusammen und schreibt das Ganze als lineares Gleichungssystem auf:
-6 = r * (-3) + s*3
8 = r * 4 + s *(-4)
-2 = r *1 + s*3

Dieses LGS läßt sich lösen mit r=1 und s=-1 $ \Rightarrow $ der Punkt D liegt auf der durch A,B,C bestimmten Ebene.

Hätte man statt dessen den Punkt (7|10|0) geprüft:
$ \vektor{7\\10\\0}-\vektor{-1\\2\\2}=r\cdot{}(\vektor{-4\\6\\3}-\vektor{-1\\2\\2}) + s\cdot{}(\vektor{2\\-2\\5}-\vektor{-1\\2\\2}) $

8 = r * (-3) + s*3
8 = r * 4 + s *(-4)
-2 = r *1 + s*3

aus den unteren beiden Gleichungen hätte sich wieder r=1 und s=-1 ergeben, weil sich dort ja nichts verändert hat.
Aber die "Probe" mit der ersten Gleichung
8 = -3 -3 wäre nicht aufgegangen $ \Rightarrow $ dieser Punkt läge nicht auf der Ebene.

Erstellt: Mo 22.05.2006 von informix
Letzte Änderung: Mo 22.05.2006 um 21:38 von informix
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]