matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteUmkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Umkehrfunktion
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Umkehrfunktion

Version 4 von Fr 08.10.2004 um 15:59
(Unterschied) ← Nächstältere Version | Aktuelle Version ansehen| Nächstjüngere Version → (Unterschied)

Definition Umkehrfunktion

Seien D und Z nichtleere Mengen.
Ist eine Funktion $ f:D \rightarrow Z $ bijektiv, so existiert eine Funktion $ f^{-1}: Z \rightarrow D $ mit folgenden zwei Eigenschaften:
1.) $ f \circ f^{-1}=id_Z $
2.) $ f^{-1} \circ f=id_D $

In diesem Fall heißt $ f^{-1} $ die Umkehrfunktion von f.
Die Funktion $ id_Z $ (bzw. $ id_D $) ist dabei die Identität auf Z (bzw. D).


Beispiele.

TODO


Bemerkungen.

1.) Die Umkehrfunktion $ f^{-1} $ einer bijektiven Funktion $ f:D \rightarrow Z $ ordnet jedem Element aus dem Zielbereich Z genau ein Element des Definitionsbereiches zu.

2.) Ist $ f:D \rightarrow Z $ bijektiv, so ist auch die Umkehrfunktion $ f^{-1}:Z \rightarrow D $ eine bijektive Funktion.

Erstellt: Fr 08.10.2004 von Marcel
Letzte Änderung: Fr 08.10.2004 um 15:59 von Marcel
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]