matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesAnfangswertaufgabe Schwingung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Anfangswertaufgabe Schwingung
Anfangswertaufgabe Schwingung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertaufgabe Schwingung: Lösung, Idee
Status: (Frage) beantwortet Status 
Datum: 21:10 Mi 05.04.2017
Autor: Frank-12

Aufgabe
Folgende Differentialgleichung beschreibt die freie Schwingung mit Dämpfung:

  mx'' + kx' + cx  =  0 (In der korrekt geschriebenen Formel stehen die seitlichen Striche neben dem x als Punkte über dem x.)

mit den Anfangswerten x(0)= [mm] x_{0} [/mm] und x'(0) = 0.

Dabei sind die Werte:

Masse: m = 50 [kg],

Dämpfungsfaktor: k = 0,5 [mm] [\bruch{Ns}{m}] [/mm] oder Reibungskoeffizient (mit N = [mm] \bruch{kg*m}{s^{2}}), [/mm]

Auslenkungsfaktor: c = 0,45 [mm] [\bruch{N}{m}] [/mm] (oder Federkonstante),

Anfangsauslenkung: [mm] x_{0} [/mm] = 2 [cm]

gegeben.

Nach welcher Zeit T ist die Anfangsauslenkung x(t) erstmals auf [mm] \bruch{1}{100} [/mm] mm zurückgegangen?



Zusatzaufgabe:

Anstelle der Masse von m = 50 kg ist eine Masse von m = 50 g = 0,05 kg einzusetzen.
Inwiefern unterscheiden sich beide Ergebnisse?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen,

ich glaube ich komme an meine Grenzen.
Kann jemand bei der Lösung helfen?

Vielen Dank für eure Aufmerksamkeit und Beachtung.

Viele Grüße
Frank

        
Bezug
Anfangswertaufgabe Schwingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:19 Mi 05.04.2017
Autor: chrisno

Mit einer Recherche solltest Du die allgemeine Lösung dieser Differentialgleichung finden. Nun ist es auch interessant zu wissen, ob Du eine fertige Lösungsfunktion benutzen darfst oder ob Du erst einmal eine Lösung für die DGL finden sollst.

Bezug
                
Bezug
Anfangswertaufgabe Schwingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:31 Do 06.04.2017
Autor: Frank-12

Hallo ChrisNo,

das kann ich nicht genau sagen. Der Kommentar zur Aufgabengruppe lautet: "Bewertet wird jeweils der vollständige und ausführliche Rechenweg, der nachvollziehbar und übersichtlich darzustellen ist."
Ich denke Letzteres ist der Fall. Aber auch eine fertige Lösungsfunktion ist besser als keine Lösung.

Viele Grüße
Frank

Bezug
                        
Bezug
Anfangswertaufgabe Schwingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Do 06.04.2017
Autor: chrisno

Es fehlt weiterhin Dein eigener Beitrag.
Ich habe "gedämpfte Schwingung" in die Suchmaschine eingetippt und sofort eine Reihe Ergebnisse bekommen. Ich rate zur Funktion, die Du bei Leifi findest.
Auch gibt es ein Problem, da ich nicht weiß, auf welchem Niveau Du arbeiten sollst oder willst. Kann ich mal vermuten, dass Du zur Schule gehst? Ich passe mich da nach Möglichkeit an.

Bezug
                                
Bezug
Anfangswertaufgabe Schwingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 06.04.2017
Autor: Frank-12

Hallo ChrisNo,

es handelt sich hier um ein UNI-Fernstudium. Da ich in Deiner Altersklasse angesiedelt bin, ist auch das Erststudium ein paar Tage her.
"Es fehlt weiterhin Dein eigener Beitrag." Die Bemühung ist vorhanden. Nur aus dem, was ich finde, kann ich keine Lösung stricken.

Viele Grüße
Frank

Bezug
                                        
Bezug
Anfangswertaufgabe Schwingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:25 Do 06.04.2017
Autor: chrisno

Du könntest dennoch die Gleichung finden und eintippen. Ich bin ab sofort wieder offline. Viel Erfolg wünsche ich Dir.

Bezug
                                        
Bezug
Anfangswertaufgabe Schwingung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:17 Fr 07.04.2017
Autor: leduart

Hallo
kannst du mit der komplexen e Funktion um gehen?
dann löst man diese Dgl mit dem Ansatz [mm] y=e^{\lambda*x} [/mm]
und erhält eine quadratische Gleichung für [mm] \lambda, [/mm]
die allgemeine Lösung der Dgl ist dann
y(t)= [mm] c_1*e^{\lambda_1*t}+c_2*e^{\lambda_2*t} [/mm]
ist lambda komplex also a [mm] \pm [/mm] ib
kann man daraus die Lösung [mm] y=e^{a*t}*(A*cos(b*t)+B*sin(b*t)) [/mm] herleiten
darin setzt man dann falls gegeben die Anfangsbedingungen ein um A und B zu bestimmen.
Jetzt musst du erstmal sagen, ob du soweit verstehst.
Gruß leduart

Bezug
                                                
Bezug
Anfangswertaufgabe Schwingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:46 Fr 07.04.2017
Autor: Frank-12

Hallo leduart,

vielen Dank für Deine Hinweise.
"Jetzt musst du erstmal sagen, ob du soweit verstehst." Das weiß ich noch nicht.
Deine Anregung will ich erstmal verarbeiten.
Ggf. melde ich mich nochmals, falls ich nicht weiterkomme,

Viele Grüße
Frank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 22m 18. tobit09
SDiffRech/Operator "berechne"
Status vor 1h 01m 3. mana
S8-10/Gleichungen mit 2 Unbekannten
Status vor 1h 38m 3. Paivren
UAnaRn/Ortsvektor in Kugelkoordinaten
Status vor 8h 32m 2. donquijote
ULinAEw/Fallunterscheidung Eigenwerte
Status vor 21h 07m 2. matux MR Agent
UAuslg/Sequenzenkalkül
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]