matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenAnsatz für Abbildungsmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Ansatz für Abbildungsmatrix
Ansatz für Abbildungsmatrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ansatz für Abbildungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Sa 19.05.2007
Autor: pleaselook

Aufgabe
Sei f: [mm] \IR^3 \to \IR^4 [/mm]  eine lineare Abbildung mit: [mm] f(e_1)=\vektor{1\\1\\0\\0}, f(e_2)=\vektor{0\\1\\1\\0}, f(e_3)=\vektor{0\\0\\1\\1}. [/mm]
Bestimme die Matrix X, die diese Abbildung bezüglich der Basen [mm] v_1=\vektor{1 \\-1 \\ 0} [/mm] ,   [mm] v_2=\vektor{0 \\ 1 \\ -1}, v_3=\vektor{1 \\ 0 \\1} [/mm] von [mm] \IR^3 [/mm]
und [mm] w_1=\vektor{0\\0\\ 0\\ 1}, w_2=\vektor{0\\ 0\\ 1\\ 1}, w_1=\vektor{0\\ 1\\ 1\\ 1} [/mm] und [mm] w_4=\vektor{1\\ 1\\ 1\\ 1} [/mm] des [mm] \IR^4 [/mm] bechreibt.

Hallo erstmal an alle Interessierte.

Gesucht ist doch hier die Basiswechselmatrix von V nach W, oder?

Gut. Dann kann man die Abbildung ja auch schreiben als f: [mm] \vektor{x_1\\x_2\\x_3} \mapsto \vektor{x_1\\x_1+x_2\\x_2+x_3\\x_3} [/mm]  oder als [mm] \vektor{x_1\\x_2\\x_3} \mapsto \pmat{1 & 0& 0\\1 &1 &0\\0 &1 &1\\0 &0 &1}\vektor{x_1\\x_2\\x_3} [/mm]

Also ich habe schonmal ein wenig herumgerechnet nur irgendwie? komisch.
Also ich würde ja sagen ich brauche zu erst die Urbilder der Basis W und die stelle ich dann als LK der Basis V dar --> X?
Die Bilder der Basis V müssen doch in der fertigen Abbildung dann die Basis W ergeben?



        
Bezug
Ansatz für Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Sa 19.05.2007
Autor: angela.h.b.


> Sei f: [mm]\IR^3 \to \IR^4[/mm]  eine lineare Abbildung mit:
> [mm]f(e_1)=\vektor{1\\1\\0\\0}, f(e_2)=\vektor{0\\1\\1\\0}, f(e_3)=\vektor{0\\0\\1\\1}.[/mm]

Hallo,

es steht hier zwar nirgendwo, aber ich nehme an, daß die Bilder der kanonischen Einheitsbasis des [mm] \IR^3 [/mm] hier als Koordinaten bzgl der kanonischen Einheitsbasis des [mm] \IR^4 [/mm] gegeben sein sollen.


>  
> Bestimme die Matrix X, die diese Abbildung bezüglich der
> Basen [mm]v_1=\vektor{1 \\-1 \\ 0}[/mm] ,   [mm]v_2=\vektor{0 \\ 1 \\ -1}, v_3=\vektor{1 \\ 0 \\1}[/mm]
> von [mm]\IR^3[/mm]
>  und [mm]w_1=\vektor{0\\0\\ 0\\ 1}, w_2=\vektor{0\\ 0\\ 1\\ 1}, w_1=\vektor{0\\ 1\\ 1\\ 1}[/mm]
> und [mm]w_4=\vektor{1\\ 1\\ 1\\ 1}[/mm] des [mm]\IR^4[/mm] bechreibt.
>  Hallo erstmal an alle Interessierte.
>  
> Gesucht ist doch hier die Basiswechselmatrix von V nach W,
> oder?
>  
> Gut. Dann kann man die Abbildung ja auch schreiben als f:
> [mm]\vektor{x_1\\x_2\\x_3} \mapsto \vektor{x_1\\x_1+x_2\\x_2+x_3\\x_3}[/mm]
>  oder als [mm]\vektor{x_1\\x_2\\x_3} \mapsto \pmat{1 & 0& 0\\1 &1 &0\\0 &1 &1\\0 &0 &1}\vektor{x_1\\x_2\\x_3}[/mm]


Die Matrix, die Du hier aufgestellt hast, beschreibt Dir die Abbildung also von der Einheitsbasis [mm] E_3 [/mm] des [mm] \IR^3 [/mm] in die Einheitsbasis [mm] E_4 [/mm] des [mm] \IR^4. [/mm]

Was Du benötigst, sind nun die Matrizen für die Basiswechsel von
V nach [mm] E_3 [/mm]  und von
W nach [mm] E_4. [/mm]

[mm] M_{V->E_3} [/mm] ist sehr einfach. Die Spalten enthalten die Koordinaten der Vektoren der Basis V in der Darstellung bzgl. [mm] E_3. [/mm]


[mm] M_{W->E_4} [/mm] kannst Du auch direkt aufschreiben, benötigen tust Du [mm] M_{E_4->W}, [/mm] welche Du durch Invertieren erhältst.


[mm] \underbrace{M_{V->W}(f)}_{=z}=\underbrace{M_{E_4->W}*}_{bzgl. E_4 { }rein, bzgl { }W { }raus}\underbrace{M_{E_3->E_4}(f)*}_{Abb.{ } in { }Einheitsbasis}\underbrace{M_{V->E_3}}_{ bzgl { }V{ } rein, bzgl.E_3 { }raus} [/mm]


>  Die Bilder der Basis V müssen doch in der fertigen
> Abbildung dann die Basis W ergeben?


Wenn Du in diese Matrix Vektoren in Darstellung bzgl. V hereinsteckt, bekommst Du Vektoren in Darstellung bzgl W heraus.

Willst Du [mm] v_1 [/mm] hereinstecken, mußt Du mit [mm] \vektor{1 \\ 0\\0}_V [/mm] multiplizieren.

Heraus bekommst Du ein Ergebnis [mm] \vektor{a \\ b\\c\\d}_W=aw_1+bw_2+cw_3+dw_4 [/mm]

Gruß v. Angela

Bezug
                
Bezug
Ansatz für Abbildungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Sa 19.05.2007
Autor: pleaselook

Abend.
Grad kann ich nicht wirklich antworten.
Ich danke dir erstmal, rechne das bis spät. morgen Mittag mal durch und melde mich dann noch mal.

Bezug
                        
Bezug
Ansatz für Abbildungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:09 So 20.05.2007
Autor: pleaselook

Hallöchen. Habe jetzt versucht das so zu machen wie Angela meinte.
Wäre nett, wenn sich jemand erbarmen würde und...

O.K. dann ist also [mm] M_{E_3 \to E_4} [/mm] [mm] =\pmat{1 & 0& 0\\1 &1 & 0\\0 & 1& 1\\0 & 0 &1} [/mm]

Nun zu [mm] M_{V\to E_3} [/mm] :

[mm] a\vektor{1\\0\\0}+b\vektor{0\\1\\0}+c\vektor{0\\0\\1}=\vektor{1\\-1\\0}\Rightarrow [/mm]   a=1, b=-1, c=0

[mm] a\vektor{1\\0\\0}+b\vektor{0\\1\\0}+c\vektor{0\\0\\1}=\vektor{0\\1\\-1}\Rightarrow [/mm]   a=0, b=1, c=-1

[mm] a\vektor{1\\0\\0}+b\vektor{0\\1\\0}+c\vektor{0\\0\\1}=\vektor{1\\0\\1}\Rightarrow [/mm]   a=1, b=0, c=1

[mm] \RightArrow M_{V\to E_3}=\pmat{1&0&1\\-1&1&0\\0&-1&1} [/mm]


[mm] M_{W\to E_4} [/mm] :

[mm] a\vektor{0\\0\\0\\1}+b\vektor{0\\0\\1\\1}+c\vektor{0\\1\\1\\1}+d\vektor{1\\1\\1\\1}=\vektor{1\\0\\0\\0}\Rightarrow [/mm]   a=0, b=0, c=-1, d=1

[mm] a\vektor{0\\0\\0\\1}+b\vektor{0\\0\\1\\1}+c\vektor{0\\1\\1\\1}+d\vektor{1\\1\\1\\1}=\vektor{0\\1\\0\\0}\Rightarrow [/mm]   a=0, b=-1, c=1 , d=0

[mm] a\vektor{0\\0\\0\\1}+b\vektor{0\\0\\1\\1}+c\vektor{0\\1\\1\\1}+d\vektor{1\\1\\1\\1}=\vektor{0\\0\\1\\0}\Rightarrow [/mm]   a=-1, b=1, c=0, d=0

[mm] a\vektor{0\\0\\0\\1}+b\vektor{0\\0\\1\\1}+c\vektor{0\\1\\1\\1}+d\vektor{1\\1\\1\\1}=\vektor{0\\0\\0\\1}\Rightarrow [/mm]   a=1, b=0, c=0, d=0

[mm] \Rightarrow M_{W\to E_4}=\pmat{0&0&-1&1\\0&-1&1&0\\-1&1&0&0\\1&0&0&0} [/mm]
[mm] \Rightarrow M_{E_4\to W}=\overline{M_{W\to E_4}}=\pmat{1&1&1&1\\1&1&1&0\\1&1&0&0\\1&0&0&0} [/mm]

[mm] \Rightarrow M_{V \to W}=\pmat{0&0&2\\0&1&2\\1&1&2\\1&0&1} [/mm]

Hui...! Ich hoffe das passt jetzt.
Grüße

Bezug
                                
Bezug
Ansatz für Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 So 20.05.2007
Autor: angela.h.b.


> O.K. dann ist also [mm]M_{E_3 \to E_4}[/mm] [mm]=\pmat{1 & 0& 0\\1 &1 & 0\\0 & 1& 1\\0 & 0 &1}[/mm]
>  
> Nun zu [mm]M_{V\to E_3}[/mm] :
>  
> [mm]a\vektor{1\\0\\0}+b\vektor{0\\1\\0}+c\vektor{0\\0\\1}=\vektor{1\\-1\\0}\Rightarrow[/mm]
>   a=1, b=-1, c=0
>  
> [mm]a\vektor{1\\0\\0}+b\vektor{0\\1\\0}+c\vektor{0\\0\\1}=\vektor{0\\1\\-1}\Rightarrow[/mm]
>   a=0, b=1, c=-1
>  
> [mm]a\vektor{1\\0\\0}+b\vektor{0\\1\\0}+c\vektor{0\\0\\1}=\vektor{1\\0\\1}\Rightarrow[/mm]
>   a=1, b=0, c=1
>  
> [mm]\RightArrow M_{V\to E_3}=\pmat{1&0&1\\-1&1&0\\0&-1&1}[/mm]
>  
>
> [mm]M_{W\to E_4}[/mm] :
>  
> [mm]a\vektor{0\\0\\0\\1}+b\vektor{0\\0\\1\\1}+c\vektor{0\\1\\1\\1}+d\vektor{1\\1\\1\\1}=\vektor{1\\0\\0\\0}\Rightarrow[/mm]
>   a=0, b=0, c=-1, d=1
>  
> [mm]a\vektor{0\\0\\0\\1}+b\vektor{0\\0\\1\\1}+c\vektor{0\\1\\1\\1}+d\vektor{1\\1\\1\\1}=\vektor{0\\1\\0\\0}\Rightarrow[/mm]
>   a=0, b=-1, c=1 , d=0
>  
> [mm]a\vektor{0\\0\\0\\1}+b\vektor{0\\0\\1\\1}+c\vektor{0\\1\\1\\1}+d\vektor{1\\1\\1\\1}=\vektor{0\\0\\1\\0}\Rightarrow[/mm]
>   a=-1, b=1, c=0, d=0
>  
> [mm]a\vektor{0\\0\\0\\1}+b\vektor{0\\0\\1\\1}+c\vektor{0\\1\\1\\1}+d\vektor{1\\1\\1\\1}=\vektor{0\\0\\0\\1}\Rightarrow[/mm]
>   a=1, b=0, c=0, d=0
>  
> [mm]\Rightarrow M_{W\to E_4}=\pmat{0&0&-1&1\\0&-1&1&0\\-1&1&0&0\\1&0&0&0}[/mm]
>  
> [mm]\Rightarrow M_{E_4\to W}=\overline{M_{W\to E_4}}=\pmat{1&1&1&1\\1&1&1&0\\1&1&0&0\\1&0&0&0}[/mm]

Hallo,

hier scheint beim Invertieren etwas schiefgegangen zu sein. Wenn ich die beiden Matrizen miteinander multipliziere, kommt nicht die Einheitsmatrix heraus.

Aber das Prinzip scheinst Du verstanden zu haben.

Oben, bei Deinen a,b,c:
Ist es Dir klar, daß Du kurzerhand als Spalten die Vektoren [mm] v_1,v_2,v_3 [/mm] bzw [mm] w_1,w_2,w_3,w_4 [/mm] in die Matrix schreiben kannst?

Gruß v. Angela

>  
> [mm]\Rightarrow M_{V \to W}=\pmat{0&0&2\\0&1&2\\1&1&2\\1&0&1}[/mm]
>  
> Hui...! Ich hoffe das passt jetzt.
>  Grüße  


Bezug
                                        
Bezug
Ansatz für Abbildungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 So 20.05.2007
Autor: pleaselook

zu den a,b,c,d:
also oben klappt dass ja, also bei [mm] M_{V \to E_3}, [/mm] da versteh ich das.
Aber bei der zweiten Matrix? Oder hätte ich da aus [mm] E_4 [/mm] ...

Bezug
                                                
Bezug
Ansatz für Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 So 20.05.2007
Autor: angela.h.b.

Oh -

ich habe zu wenig genau geguckt.

Bei Deinen a,b,c,d bestimmst Du am Anfang, dort, wo Du $ [mm] M_{W\to E_4} [/mm] $ schreibst,
in Wahrheit die Matrix [mm] M_{ E_4\to W}! [/mm]
Das hast Du richtig gemacht, die Rechnung die Du durchführst, entspricht der des Invertierens der Matrix [mm] M_{W\to E_4}. [/mm]

Die Matrix [mm] M_{W\to E_4} [/mm] erhältst Du, indem Du einfach die [mm] w_i [/mm] als Spalten einträgst. Aber hier brauchst Du sie gar nicht mehr, weil Du ja schon gleich invertiert hast.

Nichtsdestotrotz: die zu $ [mm] \pmat{0&0&-1&1\\0&-1&1&0\\-1&1&0&0\\1&0&0&0} [/mm] $  inverse Matrix hast Du verkehrt berechnet.

Gruß v. Angela

Gruß v. Angela


Bezug
                                                        
Bezug
Ansatz für Abbildungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 So 20.05.2007
Autor: pleaselook

Ok. Verstehe ich hatte gleich [mm] M_{E_4\to W} [/mm] bestimmt. Die brauche ich nicht mehr zu invertieren. Gut.
Nur die endgültig gesuchte Matrix muß ich noch mal berechnen.

Ich glaub jetzt hab ich das auch verstanden.

Nun soll ich noch ne Aussage zu Injektivität bzw. Surjektivität treffen.

Also Kern f:  [mm] \pmat{x_1\\x_1+x_2\\x_2+x_3\\x_3}=\vektor{0\\0\\0\0}\gdw [/mm] {0} ->Injektiv

Bei der Surjektivität frage ich mich, ob ich mit dem Dimensionssatz argumentieren darf. Zumindest ist ja dim Kern f = 1, dim Bild müßte 3 sein.
dim Bild f = dim [mm] \IR3 [/mm] = 3 ->Surjektiv.

Kann man das so machen?

Bezug
                                                                
Bezug
Ansatz für Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 So 20.05.2007
Autor: angela.h.b.


> Nun soll ich noch ne Aussage zu Injektivität bzw.
> Surjektivität treffen.



Zur Surjektivität:

Wir bilden hier von [mm] \IR^3 [/mm] in den [mm] \IR^4 [/mm] ab.
Wir haben es mit einer linearen Abbildung zu tun, d.h. das Bild kann höchstens die Dimension 3 haben.

Zur Injektivität:

Ja, der Kern =0, also ist die Abbildung injektiv.

>  
> Also Kern f:  
> [mm]\pmat{x_1\\x_1+x_2\\x_2+x_3\\x_3}=\vektor{0\\0\\0\\0}\gdw[/mm] [mm] \pmat{x_1\\x_2\\x_3}=\pmat{0\\0\\0} [/mm]

> mit dem Dimensionssatz argumentieren darf. Zumindest ist ja dim Kern f = 1, dim Bild müßte 3 sein.

Das allerdings widerspricht in höchstem Mäße dem, was Du eben ausgerechnet hast, daß nämlich der Kern =0, also nulldimensional ist.

Den Dimensionssatz kannst Du aber trotzdem verwenden:
[mm] dim\IR^3=dim [/mm] kernf+dimBildf.
Auch hier bekommst Du dim Bildf=3.
Der Unterschied: Du bekommst es so auf die richtige Art und Weise...

Gruß v. Angela

Bezug
                                                                        
Bezug
Ansatz für Abbildungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 So 20.05.2007
Autor: pleaselook

O.K. Dann sind:
dim Kern f = 0
dim Bild f = 3
dim URBild = dim [mm] \IR^3 [/mm] = 3

Injektiv ist mir aufgrund des Kerns klar.
Nur bei meiner Surjektivitätsvorstellung scheiters. f dürfte doch nicht surjektiv sein. ich kann mir doch ein element aus [mm] R^4 [/mm] greifen und komm da nicht aus x hin, glaub ich zumindest. Oder bezieht sich diese Vorstellung nur auf den Bildbereich der ja dim 3 hat.


Bezug
                                                                                
Bezug
Ansatz für Abbildungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 So 20.05.2007
Autor: pleaselook

Ja ansonsten schonmal ein dickes Danke und Lob.
Sorry, dass ich Sie da ein paar mal verwirrt habe.
Schönen Sonntag noch.

Bezug
                                                                                
Bezug
Ansatz für Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 So 20.05.2007
Autor: angela.h.b.


> O.K. Dann sind:
>  dim Kern f = 0
>  dim Bild f = 3
>  dim URBild = dim [mm]\IR^3[/mm] = 3

Zu "Urbild" gehört immer ein "wovon".
Aber ich weiß, was Du meinst: nennen wir es Definitionsbereich.

>  Nur bei meiner Surjektivitätsvorstellung scheiters. f
> dürfte doch nicht surjektiv sein.

Völlig korrekt. f IST nicht surjektiv.

Wir haben doch ausgerechnet, daß das Bild von f die Dimension 3 hat. Von daher kann man mit f nicht ganz [mm] \IR^4 [/mm] "erwischen", denn dessen Dimension ist 4.



ich kann mir doch ein

> element aus [mm]R^4[/mm] greifen und komm da nicht aus x hin, glaub
> ich zumindest.

Du glaubst richtig.


Oder bezieht sich diese Vorstellung nur auf

> den Bildbereich der ja dim 3 hat.

Es ist Bild f [mm] \subseteq \IR^4. [/mm]
Wir haben hier und heute eine echte Teilmenge.

Oh - nun schwant mir, was Dich vielleicht verwirrt:

Das Bild ist dreidimensional. Es wird aufgespannt von drei linear unabhängigen Vektoren des [mm] \IR^4. [/mm] Das Bild ist ein dreidimensionaler (=Basis aus drei Elementen) Untervektorraum des [mm] \IR^4. [/mm]

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]