matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenDualraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Dualraum
Dualraum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dualraum: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:36 Fr 14.06.2013
Autor: DrRiese

Aufgabe
Sei V ein dreidimensionaler [mm] \IR-Vektorraum [/mm] mit Basis [mm] S=(s_{1},s_{2},s_{3}). [/mm] Seien weiter [mm] u,v_{2},v_{3},w_{2},w_{3} \in [/mm] V mit
[mm] u_{S}=(1,2,3)^{T}, (v_{2})_{S}=(1,1,0)^{T}, (v_{3})_{S}=(0,1,1)^{T}, (w_{2})_{S}=(0,1,2)^{T}, (w_{3})_{S}=(1,1,1)^{T} [/mm]
und [mm] B=(s_{1},v_{2},v_{3}) [/mm] und [mm] C=(s_{1},w_{2},w_{3}) [/mm] zwei weitere Basen.

a) Wir betrachten [mm] s^{\*}_{1} [/mm] einmal als Element von [mm] B^{\*} [/mm] und einmal als Element aus [mm] C^{\*} [/mm] und schreiben dafür [mm] (s^{\*}_{1})_{B^{\*}} [/mm] bzw. [mm] (s^{\*}_{1})_{C^{\*}}. [/mm] Berechnen Sie [mm] (s^{\*}_{1})_{B^{\*}}(u) [/mm] und [mm] (s^{\*}_{1})_{C^{\*}}(u). [/mm]

b) Bestimmen Sie [mm] M=\{w \in V : (s^{\*}_{1})_{B^{\*}}(w)=(s^{\*}_{1})_{C^{\*}}(w)=0 \}. [/mm]

c) Sei nun [mm] \overline{V} [/mm] ein n-dimensionaler [mm] \IR-Vektorraum, \overline{v} \in \overline{V} [/mm] und [mm] \overline{B}, \overline{C} [/mm] zwei Basen, die [mm] \overline{v} [/mm] enthalten. Welche Dimension kann dann die folgende Menge haben? (Begründung)
[mm] \overline{M}=\{\overline{w} \in \overline{V} : \overline{v^{\*}_{B^{\*}}}(\overline{w})=\overline{v^{\*}_{C^{\*}}}(\overline{w})=0\} [/mm]

Hallo liebe Forenmitglieder :-)
Habe diese Aufgabe bearbeitet, bin mir aber recht unsicher. Wäre super, wenn jemand nochmal drübergucken könnte :-)

zu a)
[mm] u_{S}=s_{1}+2s_{2}+3s_{3} [/mm]
[mm] B=(s_{1},v_{2},v_{3}) [/mm] = [mm] (s_{1},s_{1}+s_{2},s_{2}+s_{3}) [/mm]
[mm] u_{B}= \lambda_{1}s_{1}+\lambda_{2}(s_{1}+s_{2})+\lambda_{3}(s_{2}+s_{3})=2s_{1}-(s_{1}+s_{2})+3(s_{2}+s_{3})=s_{1}+2s_{2}+3s_{3} [/mm]
Also [mm] u_{B}=(2,-1,3)^{T} [/mm]
[mm] (s^{\*}_{1})_{B^{\*}}(u)=(s^{\*}_{1})_{B^{\*}}(2s_{1}-v_{2}+3v_{3})=2(s^{\*}_{1})_{B^{\*}}(s_{1})-(s^{\*}_{1})_{B^{\*}}(v_{2})+3(s^{\*}_{1})_{B^{\*}}(v_{3})=2-0+0=2 [/mm]

Für [mm] C^{\*} [/mm] analog.

zu b)
[mm] M=\{\lambda\vektor{0 \\ 1 \\ 1},\lambda \in \IR \}. [/mm]

zu c)
dim [mm] \overline{V}=dim \overline{V^{\*}}=n [/mm]
[mm] \Rightarrow [/mm] da sowohl [mm] \overline{B}, [/mm] als auch [mm] \overline{C} [/mm] das Element [mm] \overline{v} [/mm] enthalten, gilt für die Dimension von [mm] \overline{M}: dim\overline{M}=n-1 [/mm]

Hoffe, das dies wenigstens halbwegs richtig ist :-)

LG,
DrRiese

        
Bezug
Dualraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 So 16.06.2013
Autor: DrRiese

Keiner da, der kurz drübergucken möchte? :-(

Bezug
        
Bezug
Dualraum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Mo 17.06.2013
Autor: felixf

Moin DrRiese!

> Sei V ein dreidimensionaler [mm]\IR-Vektorraum[/mm] mit Basis
> [mm]S=(s_{1},s_{2},s_{3}).[/mm] Seien weiter
> [mm]u,v_{2},v_{3},w_{2},w_{3} \in[/mm] V mit
>  [mm]u_{S}=(1,2,3)^{T}, (v_{2})_{S}=(1,1,0)^{T}, (v_{3})_{S}=(0,1,1)^{T}, (w_{2})_{S}=(0,1,2)^{T}, (w_{3})_{S}=(1,1,1)^{T}[/mm]
> und [mm]B=(s_{1},v_{2},v_{3})[/mm] und [mm]C=(s_{1},w_{2},w_{3})[/mm] zwei
> weitere Basen.
>  
> a) Wir betrachten [mm]s^{\*}_{1}[/mm] einmal als Element von [mm]B^{\*}[/mm]
> und einmal als Element aus [mm]C^{\*}[/mm] und schreiben dafür
> [mm](s^{\*}_{1})_{B^{\*}}[/mm] bzw. [mm](s^{\*}_{1})_{C^{\*}}.[/mm] Berechnen
> Sie [mm](s^{\*}_{1})_{B^{\*}}(u)[/mm] und [mm](s^{\*}_{1})_{C^{\*}}(u).[/mm]
>  
> b) Bestimmen Sie [mm]M=\{w \in V : (s^{\*}_{1})_{B^{\*}}(w)=(s^{\*}_{1})_{C^{\*}}(w)=0 \}.[/mm]
>  
> c) Sei nun [mm]\overline{V}[/mm] ein n-dimensionaler [mm]\IR-Vektorraum, \overline{v} \in \overline{V}[/mm]
> und [mm]\overline{B}, \overline{C}[/mm] zwei Basen, die [mm]\overline{v}[/mm]
> enthalten. Welche Dimension kann dann die folgende Menge
> haben? (Begründung)
>  [mm]\overline{M}=\{\overline{w} \in \overline{V} : \overline{v^{\*}_{B^{\*}}}(\overline{w})=\overline{v^{\*}_{C^{\*}}}(\overline{w})=0\}[/mm]
>  
> zu a)
>  [mm]u_{S}=s_{1}+2s_{2}+3s_{3}[/mm]
>  [mm]B=(s_{1},v_{2},v_{3})[/mm] = [mm](s_{1},s_{1}+s_{2},s_{2}+s_{3})[/mm]
>  [mm]u_{B}= \lambda_{1}s_{1}+\lambda_{2}(s_{1}+s_{2})+\lambda_{3}(s_{2}+s_{3})=2s_{1}-(s_{1}+s_{2})+3(s_{2}+s_{3})=s_{1}+2s_{2}+3s_{3}[/mm]
>  
> Also [mm]u_{B}=(2,-1,3)^{T}[/mm]

[ok]

> [mm](s^{\*}_{1})_{B^{\*}}(u)=(s^{\*}_{1})_{B^{\*}}(2s_{1}-v_{2}+3v_{3})=2(s^{\*}_{1})_{B^{\*}}(s_{1})-(s^{\*}_{1})_{B^{\*}}(v_{2})+3(s^{\*}_{1})_{B^{\*}}(v_{3})=2-0+0=2[/mm]

Sieht gut aus!

> Für [mm]C^{\*}[/mm] analog.
>  
> zu b)
> [mm]M=\{\lambda\vektor{0 \\ 1 \\ 1},\lambda \in \IR \}.[/mm]

Wie kommst du dadrauf? Und bzgl. welcher Basis gibst du den Vektor $(0, 1, [mm] 1)^T$ [/mm] an?

> zu c)
>  dim [mm]\overline{V}=dim \overline{V^{\*}}=n[/mm]
>  [mm]\Rightarrow[/mm] da
> sowohl [mm]\overline{B},[/mm] als auch [mm]\overline{C}[/mm] das Element
> [mm]\overline{v}[/mm] enthalten, gilt für die Dimension von
> [mm]\overline{M}: dim\overline{M}=n-1[/mm]

Das stimmt nicht (bzw. muss nicht stimmen!), denn sonst haette die Menge in b) Dimension 2 und nicht 1.

Beschreib doch mal genauer wie du darauf gekommen bist. Und was du bei b) gemacht hast.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]