matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Formel Varianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik (Anwendungen)" - Formel Varianz
Formel Varianz < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel Varianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:41 Mi 18.05.2016
Autor: steve.joke

Hallo,

eine Frage, kann man zur Berechnung der Varianz folgende Formel benutzen:

[mm] V=(\bruch{1}{n}\cdot \summe_{i=1}^{n}x_i^2)-\overline{x}^2 [/mm]

Kennt die jemand von Euch, wisst ihr, ob man die benutzen kann?

Ich kenne nämlich nur:

[mm] V=\bruch{1}{n}\cdot (\summe_{i=1}^{n}x_i-\overline{x})^2 [/mm]

Sind beide Formel äquivalent?

Grüße

        
Bezug
Formel Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:58 Mi 18.05.2016
Autor: fred97


> Hallo,
>  
> eine Frage, kann man zur Berechnung der Varianz folgende
> Formel benutzen:
>  
> [mm]V=(\bruch{1}{n}\cdot \summe_{i=1}^{n}x_i^2)-\overline{x}^2[/mm]
>  
> Kennt die jemand von Euch, wisst ihr, ob man die benutzen
> kann?
>  
> Ich kenne nämlich nur:
>  
> [mm]V=\bruch{1}{n}\cdot (\summe_{i=1}^{n}x_i-\overline{x})^2[/mm]
>  
> Sind beide Formel äquivalent?

Na klar !


Ist a eine feste Zahl, so ist doch

   [mm] $\summe_{i=1}^{n}a=a+a+...+a$ [/mm]  (n Summanden),

also

    [mm] $\summe_{i=1}^{n}a=n*a$ [/mm]

Es folgt:

    [mm] $\bruch{1}{n}\cdot \summe_{i=1}^{n}a=a$ [/mm]

Bei Dir ist [mm] $a=\overline{x}^2$ [/mm]

FRED


>  
> Grüße


Bezug
        
Bezug
Formel Varianz: Falsch geschrieben!
Status: (Antwort) fertig Status 
Datum: 12:25 Mi 18.05.2016
Autor: HJKweseleit


> Hallo,
>  
> eine Frage, kann man zur Berechnung der Varianz folgende
> Formel benutzen:
>  
> [mm]V=(\bruch{1}{n}\cdot \summe_{i=1}^{n}x_i^2)-\overline{x}^2[/mm]
>  
> Kennt die jemand von Euch, wisst ihr, ob man die benutzen
> kann?
>  
> Ich kenne nämlich nur:
>  
> [mm]V=\bruch{1}{n}\cdot (\summe_{i=1}^{n}x_i-\overline{x})^2[/mm]
>  


Diese Formel ist so falsch geklammert. Sie muss heißen:


[mm]V=\bruch{1}{n}\cdot \summe_{i=1}^{n}(x_i-\overline{x})^2[/mm]

> Sind beide Formel äquivalent?
>  
> Grüße


Bezug
                
Bezug
Formel Varianz: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 13:19 Mi 18.05.2016
Autor: ErikErik

Genau, so ist die Varianz definiert! Die beiden ursprünglich genannten Formeln sind natürlich nicht äquivalent.
Wenn ich über (xi-ximittel) quadriere und dann summiere, ist das nicht dasselbe wie Summieren und dann Quadrieren. Und vor allem kann man nicht einfach xmittel als Konstante herausziehen. Es gilt: [mm] (xi-ximittel)^2 [/mm] = [mm] xi^2 [/mm] - 2 xi * ximittel + [mm] ximittel^2. [/mm]

Also: Vorsicht mit den Klammern!

Erik

Bezug
                
Bezug
Formel Varianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Mi 18.05.2016
Autor: steve.joke

Hi an alle nochmal,

Also kann ich schon mit  [mm] V=(\bruch{1}{n}\cdot \summe_{i=1}^{n}x_i^2)-\overline{x}^2 [/mm] die Varianz berechnen oder stimmt die Formel nicht?? Mich würde halt interessieren, ob ich immer damit die Varianz berechnen kann oder ob mein Ergebnis gerade nur zufällig richtig ist, was ich mit der Formel berechnet habe.

Denn wie ErikErik geschrieben hat, kenne ich eigentlich nur die Formel [mm] V=\bruch{1}{n}\cdot \summe_{i=1}^{n}(x_i-\overline{x})^2 [/mm] zur Berechnung der Varianz.

Und nach der binomischen Formel würde ich auch sagen, dass

[mm] (\bruch{1}{n}\cdot \summe_{i=1}^{n}x_i^2)-\overline{x}^2 \not=\bruch{1}{n}\cdot \summe_{i=1}^{n}(x_i-\overline{x})^2 [/mm]

??

Grüße

Bezug
                        
Bezug
Formel Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Mi 18.05.2016
Autor: HJKweseleit


> Hi an alle nochmal,
>
> Also kann ich schon mit  [mm]V=(\bruch{1}{n}\cdot \summe_{i=1}^{n}x_i^2)-\overline{x}^2[/mm]
> die Varianz berechnen oder stimmt die Formel nicht??

Ja, diese Formel ist richtig!

Mich

> würde halt interessieren, ob ich immer damit die Varianz
> berechnen kann oder ob mein Ergebnis gerade nur zufällig
> richtig ist, was ich mit der Formel berechnet habe.
>  
> Denn wie ErikErik geschrieben hat, kenne ich eigentlich nur
> die Formel [mm]V=\bruch{1}{n}\cdot \summe_{i=1}^{n}(x_i-\overline{x})^2[/mm]
> zur Berechnung der Varianz.

Diese Formel ist auch richtig, denn sie ist die Definition der Varianz.

>
> Und nach der binomischen Formel würde ich auch sagen, dass
>
> [mm](\bruch{1}{n}\cdot \summe_{i=1}^{n}x_i^2)-\overline{x}^2 \not=\bruch{1}{n}\cdot \summe_{i=1}^{n}(x_i-\overline{x})^2[/mm]


Nein. Es ist

[mm] \bruch{1}{n}\cdot \summe_{i=1}^{n}(x_i-\overline{x})^2 [/mm]
[mm] =\bruch{1}{n}\cdot \summe_{i=1}^{n}(x_i^2-2*x_i*\overline{x}+\overline{x}^2) [/mm]
[mm] =\bruch{1}{n}\cdot \summe_{i=1}^{n}x_i^2-2*\overline{x}*\bruch{1}{n}\cdot \summe_{i=1}^{n}x_i+\bruch{1}{n}\cdot \summe_{i=1}^{n}\overline{x}^2 [/mm]
[mm] =\bruch{1}{n}\cdot \summe_{i=1}^{n}x_i^2-2*\overline{x}*\overline{x}+\bruch{1}{n}*n*\overline{x}^2 [/mm]
[mm] =\bruch{1}{n}\cdot \summe_{i=1}^{n}x_i^2-\overline{x}^2 [/mm]


>  
> Grüße


Bezug
                                
Bezug
Formel Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:27 Mi 18.05.2016
Autor: steve.joke

Besten dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 2h 13m 7. Schreim
USons/Quasireguläre Hexagone
Status vor 2h 55m 10. Tipsi
IntTheo/Flächenmaß berechnen
Status vor 4h 11m 2. matux MR Agent
Algebra/Dimension berechnen
Status vor 4h 49m 1. Franzi17
UAlgGRK/Gruppe, Ordnung p^2
Status vor 4h 54m 5. MRsense
SFolgen/Grenzwert einer Reihe
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]