matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikGrenzwertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Grenzwertberechnung
Grenzwertberechnung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:12 Do 06.04.2017
Autor: Fry

Aufgabe
<br>
Sei [mm](X_n)[/mm] eine Folge von poissonverteilten ZV mit Parameter n ([mm]n\in\mathbb N[/mm])
Zeigen Sie:
[mm]\lim_{n\to\infty}P(X_n1 \end{cases}[/mm]


<br>

Hallo zusammen,
mein erster Gedanke war, dass man es mit ZGWS lösen könnte, a la:
[mm]P(X_n Für [mm]n\to\infty[/mm] würde sich dann die Aussage ergeben, da [mm]\Phi[/mm] stetig ist.
Allerdings glaube ich, dass ich die Normalapproximation im 2.Schritt nicht so durchführen kann, da ich ja dafür eigentlich bereits n gegen unendlich laufen lasse.
Kann mir da jemand helfen?
Vielen Dank :)
LG
Fry

        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Do 06.04.2017
Autor: donquijote

Hallo,
du könntest mit der Tschebyscheff-Ungleichung argumentieren.

Bezug
                
Bezug
Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Do 06.04.2017
Autor: Fry

Hey,

danke dir.
Also für t>1 klappt das, aber
für t<1 nicht, da (t-1)n negativ ist.
Dann kann ja die Tschebyscheff-Ungleichung nicht angewendet werden.
Wie könnte man es denn im Fall t<1 machen?

VG
Fry

Bezug
                        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Do 06.04.2017
Autor: donquijote

Hallo nochmal,

> Hey,
>  
> danke dir.
>  Also für t>1 klappt das, aber
>  für t<1 nicht, da (t-1)n negativ ist.
>  Dann kann ja die Tschebyscheff-Ungleichung nicht
> angewendet werden.

Doch. Tschebyscheff gibt eine Abschätzung für [mm]P(|X-EX|\ge a)[/mm].
Durch den Betrag wird alles positiv.

>  Wie könnte man es denn im Fall t<1 machen?
>  
> VG
>  Fry


Bezug
                                
Bezug
Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Fr 07.04.2017
Autor: Fry

Hey,

da wird doch nichts positiv.
[mm] $P(X_n\ge tn)\le P(X_n-n\ge (t-1)n)\le P(|X_n-n|\ge [/mm] (t-1)n)$

Die Tschebyscheff-Ungleichung gilt aber nur, wenn bei [mm] P(|X-E(X)|\ge \varepsilon) [/mm] das [mm] $\varepsilon>0$ [/mm] ist. Ist es aber nicht.

Allerdings muss ja [mm] $P(|X_n-n|\ge [/mm] (t-1)n)=0$ sein, da der Betrag nichtnegativ ist. Aber damit gewinnt man letzlich nix.

LG
Fry

Bezug
                                        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 Fr 07.04.2017
Autor: Gonozal_IX

Hiho,

> Hey,
>  
> da wird doch nichts positiv.
>  [mm]P(X_n\ge tn)\le P(X_n-n\ge (t-1)n)\le P(|X_n-n|\ge (t-1)n)[/mm]
>  
> Die Tschebyscheff-Ungleichung gilt aber nur, wenn bei
> [mm]P(|X-E(X)|\ge \varepsilon)[/mm] das [mm]\varepsilon>0[/mm] ist. Ist es
> aber nicht.

Das liegt einfach daran, dass du ungünstig abschätzt!
Nur ist deine Schlussfolgerung falsch:

> Allerdings muss ja [mm]P(|X_n-n|\ge (t-1)n)=0[/mm] sein, da der Betrag nichtnegativ ist.

Nein, wie du richtig erkannt hast, ist der Betrag nichtnegativ, die rechte Seite aber negativ.
D.h. da steht eine immer wahre Aussage, also gilt: [mm]P(|X_n-n|\ge (t-1)n)=1[/mm]

Was du also eigentlich abgeschätzt hast, ist:
$ [mm] P(X_n\ge tn)\le P(X_n-n\ge (t-1)n)\le [/mm] 1 $

Das ist aber eine triviale Abschätzung…

Mal ein kleiner Denkanstoss:
$ [mm] P(X_n \ge [/mm]  tn) = P(-tn [mm] \ge -X_n) [/mm] = P(n - tn [mm] \le [/mm] n - [mm] X_n) [/mm]  = P(n - [mm] X_n \ge [/mm]  (1-t)n) [mm] \le P(|X_n [/mm] - n| [mm] \ge [/mm]  (1-t)n)$

Bezug
                                                
Bezug
Grenzwertberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Fr 07.04.2017
Autor: Fry

Supi,
danke Gono :)
LG
Fry

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 8m 6. Pacapear
SProzMatr/Stochastische Prozesse
Status vor 1h 37m 12. sancho1980
MSons/Umformung
Status vor 2h 0m 3. Windbeutel
LaTeX/Silbentrennung
Status vor 10h 13m 11. HJKweseleit
UStoc/Würfel
Status vor 14h 15m 21. Al-Chwarizmi
S8-10/Umkreisradius von Polygon
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]