matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenHölder-Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Partielle Differentialgleichungen" - Hölder-Stetigkeit
Hölder-Stetigkeit < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hölder-Stetigkeit: Kurze Frage
Status: (Frage) beantwortet Status 
Datum: 13:50 Mi 16.01.2013
Autor: Studiiiii

Aufgabe
Sei [mm] 0< \alpha \le \beta \le 1 [/mm].
Gilt nun [mm] C^\alpha (G) \subset C^\beta (G) [/mm]?
(wobei [mm] C^\alpha (G) [/mm] die Menge der [mm] \alpha [/mm]-Hölder-Stetigen funktionen bezeichnet.)

hallöchen
meine Frage ist, ob obige Aussage wahr ist ?

ich bin momentan noch der überzeugung sie stimmt, da ich eine Funktion f, die [mm]\alpha[/mm]-hölder stetig ist, abschätzen kann mit einer konstanten multipliziert mit dem Abstand von 2 Stellen von f mit exponent [mm]\alpha[/mm].
Kann ich das nun analog abschätzen mit [mm]\beta[/mm] und erhalte meine Behauptung?

kurz:
[mm] | f(x)-f(y) | \le c | x-y|^\alpha \le c d |x-y|^\beta [/mm] geht das?

Lg

        
Bezug
Hölder-Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Do 17.01.2013
Autor: Gonozal_IX

Hiho,

> Sei [mm]0< \alpha \le \beta \le 1 [/mm].
>  Gilt nun [mm]C^\alpha (G) \subset C^\beta (G) [/mm]?

Nein, denn dann wäre jede Hölderstetige Funktion ja sofort Lipschitz-stetig, da Hölderstetigkeit zum Exponent 1 der Lipschitzstetigkeit entspricht.
Bastel (oder such dir) einfach eine Funktion, die Hölder-Stetig zu einem [mm] $\alpha [/mm]  < 1$, aber nicht Lipschitz stetig ist.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]