matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegrieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integrieren
Integrieren < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrieren: Stammfunktion, schwer
Status: (Frage) beantwortet Status 
Datum: 18:34 So 15.01.2017
Autor: pc_doctor

Aufgabe
[mm] \integral_{0}^{6}{\bruch{1}{\wurzel{x(6-x)}} dx} [/mm]





Hallo,

mir macht die Aufgabe etwas Probleme. Die Stammfunktion zu finden, ist hier nicht so einfach.

Partialbruchzerlegung hat nichts gebracht. Deshalb habe ich Substitution angewandt.

[mm] \integral_{0}^{6}{\bruch{1}{\wurzel{x(6-x)}} dx} [/mm]

Habe erstmal die Diskriminante anders aufgeschrieben:

[mm] \integral_{0}^{6}{\bruch{1}{\wurzel{9-(x-3)^{2}}} dx} [/mm]

Sei z = x-3

dx = dz

=>
[mm] \integral_{0}^{6}{\bruch{1}{\wurzel{9-z^{2}}} dz} [/mm]

Ab hier weiß ich nicht mehr weiter. Ich möchte zu [mm] \bruch{1}{\wurzel{1-z^{2}}} [/mm] kommen, denn das ist ein Standardintegral.

Was kann ich hier noch machen oder würdet ihr es anders machen?

Vielen Dank im Voraus.

        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 So 15.01.2017
Autor: Infinit

Hallo pc-doctor,
Deine Substitution finde ich schon mal prima, denn für diese Art von Integral kenne ich aus alter Zeit die Stammfunktion. Jetzt stellt sich natürlich die Frage, ob man dies weiss oder nicht und insofern ist Deine Frage zum richtigen Weitermachen nicht so einfach zu beantworten. Der Arcussinus taucht hier auf, aber ob dies jemand sieht, der nicht die Lösung kennt, das sei mal dahingestellt.
Es gilt auf jeden Fall
[mm] \int \bruch{dz}{\wurzel{a^2-z^2}} = \arcsin(\bruch{z}{a}) [/mm]
Viele Grüße,
Infinit 

Bezug
                
Bezug
Integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:49 So 15.01.2017
Autor: pc_doctor

Hallo lieber Infinit,

vielen Dank für die Antwort. Die Lösung ist meinem Tutor sicherlich bekannt, da er den Tipp mit dem arcsin gab.

Schönes Wochenende und danke nochmal.

Bezug
                        
Bezug
Integrieren: Zu beachten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 So 15.01.2017
Autor: Diophant

Hallo zusammen,

die Frage der Stammfunktion ist ja geklärt. Allerdings: es handelt sich um ein uneigentliches Integral. Bedeutet: du musst das Integral als Grenzwert schreiben (Konvergenz hin oder her).

Du könntest auch noch die Achsensymmetrie des Integranden zu x=3 nutzen, dann hast du die Grenzwertbetrachtung nur an einer Seite.

Gruß, Diophant

Bezug
        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 So 15.01.2017
Autor: donquijote


> [mm]\integral_{0}^{6}{\bruch{1}{\wurzel{x(6-x)}} dx}[/mm]
>  
>
>
>
> Hallo,
>  
> mir macht die Aufgabe etwas Probleme. Die Stammfunktion zu
> finden, ist hier nicht so einfach.
>  
> Partialbruchzerlegung hat nichts gebracht. Deshalb habe ich
> Substitution angewandt.
>
> [mm]\integral_{0}^{6}{\bruch{1}{\wurzel{x(6-x)}} dx}[/mm]
>  
> Habe erstmal die Diskriminante anders aufgeschrieben:
>  
> [mm]\integral_{0}^{6}{\bruch{1}{\wurzel{9-(x-3)^{2}}} dx}[/mm]
>  
> Sei z = x-3
>  
> dx = dz
>  
> =>
> [mm]\integral_{0}^{6}{\bruch{1}{\wurzel{9-z^{2}}} dz}[/mm]

Hallo,
der Ansatz ist ok, du musst aber noch berücksichtigen, dass sich durch die Substitution die Integrationsgrenzen ändern.

>  
> Ab hier weiß ich nicht mehr weiter. Ich möchte zu
> [mm]\bruch{1}{\wurzel{1-z^{2}}}[/mm] kommen, denn das ist ein
> Standardintegral.

Darauf kommst du, indem die eine weitere Substitution [mm]t=\frac z3\Leftrightarrow z^2=9t^2[/mm] ausführst (bzw. beide Substitutionen in einem Schritt machst, d. h. [mm]t=\frac{x-3}{3}[/mm]).

>  
> Was kann ich hier noch machen oder würdet ihr es anders
> machen?
>
> Vielen Dank im Voraus.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 3h 04m 1. riju
UStoc/Bayesscher Rand
Status vor 10h 36m 3. Tabs2000
UAnaR1FunkDiff/Ableiten einer Doppelsumme
Status vor 10h 44m 12. Gonozal_IX
MaßTheo/Messbarkeit
Status vor 13h 16m 10. donquijote
UAnaRn/Satz über implizite Funktionen
Status vor 14h 46m 9. rabilein1
S5-7/Maßband-Ausschnitt
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]