matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenKomposition von Abbildungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Komposition von Abbildungen
Komposition von Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komposition von Abbildungen: Beweise g°f ist eine Abbildung
Status: (Frage) beantwortet Status 
Datum: 12:27 Mi 03.05.2017
Autor: Olli1968

Aufgabe
Satz: Sind [mm] f:M_{1} \to M_{2} [/mm] und [mm] g:M_{2} \to M_{3} [/mm] Abbildungen, so ist auch die Komposition [mm] g \circ f:M_{1} \to M_{3} [/mm] eine Abbildung. (Beweis als Übung.)

Hallo liebe Mathefreunde,
zunächst ein Lob an euch: Ihr seid echt schnell und super. Mit ein Grund warum ich diese Seite auch gerne weiterempfehle ;-) - Danke!

Zurück zum Satz und zum Beweis.
Vorab: Wir haben die Abbildung wie folgt definiert:

Def.: Sind [mm] M [/mm] und [mm] N [/mm] zwei nicht leere Mengen und [mm] f \subseteq M \times N [/mm], so heißt [mm] f [/mm] eine Abbildung von [mm] M [/mm] nach [mm] N [/mm], falls es zu jedem [mm] m \in M [/mm] genau ein [mm] n \in N [/mm] mit [mm] (m,n) \in f [/mm] gibt.

Zum Beweis: (hier nun mein Versuch)
Sei [mm] x \in M_{1} [/mm]. Da [mm] f:M_{1} \to M_{2} [/mm] , gibt es zu jedem [mm] x [/mm] genau ein [mm] y \in M_{2} [/mm], so dass [mm] (x, y) \in f \subseteq M_{1} \times M_{2} [/mm].
Da [mm] g:M_{2} \to M_{3} [/mm] eine Abbildung ist, gibt es zu jedem [mm] y \in M_{2} [/mm] genau ein [mm] z \in M_{3} [/mm], mit [mm] (y, z) \in g [/mm].
Insbesondere gibt es zu jedem [mm] y \in M_{2} [/mm] mit [mm] (x,y) \in f \subseteq M_{1} \times M_{2} [/mm] genau ein [mm] z \in M_{3} [/mm], so dass mit [mm] y=f(x) [/mm] gilt [mm] (f(x), z) \in g \subseteq M_{2} \times M_{3} [/mm].
Somit gilt für die Komposition [mm] g \circ f : M_{1} \times M_{3} [/mm] das für jedes [mm] x \in M_{1} [/mm] genau ein [mm] z \in M_{3} [/mm] existiert mit [mm] (x,z) \in (g \circ f) \subseteq M_{1} \times M_{3} [/mm].
Also ist [mm] g \circ f : M_{1} \to M_{3} [/mm] eine Abbildung im Sinne der Definition.   q.e.d.

Wäre das ein Beweis für den obigen Satz?

Vielen Dank

LG Olli






        
Bezug
Komposition von Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Mi 03.05.2017
Autor: Gonozal_IX

Hiho,

> Zum Beweis: (hier nun mein Versuch)
>  Sei [mm]x \in M_{1} [/mm]. Da [mm]f:M_{1} \to M_{2}[/mm] , gibt es zu jedem [mm]x[/mm] genau ein [mm]y \in M_{2} [/mm], so dass [mm](x, y) \in f \subseteq M_{1} \times M_{2} [/mm].

[ok]

> Da [mm]g:M_{2} \to M_{3}[/mm] eine Abbildung ist, gibt es zu jedem [mm]y \in M_{2}[/mm] genau ein [mm]z \in M_{3} [/mm], mit [mm](y, z) \in g [/mm].

[ok]

> Insbesondere gibt es zu jedem [mm]y \in M_{2}[/mm] mit [mm](x,y) \in f \subseteq M_{1} \times M_{2}[/mm]
> genau ein [mm]z \in M_{3} [/mm], so dass mit [mm]y=f(x)[/mm] gilt [mm](f(x), z) \in g \subseteq M_{2} \times M_{3} [/mm].

[ok]

> Somit gilt für die Komposition [mm]g \circ f : M_{1} \times M_{3}[/mm]
> das für jedes [mm]x \in M_{1}[/mm] genau ein [mm]z \in M_{3}[/mm] existiert mit [mm](x,z) \in (g \circ f) \subseteq M_{1} \times M_{3} [/mm].

[ok]

> Wäre das ein Beweis für den obigen Satz?

Sieht gut aus.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 3h 21m 1. riju
UStoc/Bayesscher Rand
Status vor 10h 53m 3. Tabs2000
UAnaR1FunkDiff/Ableiten einer Doppelsumme
Status vor 11h 01m 12. Gonozal_IX
MaßTheo/Messbarkeit
Status vor 13h 33m 10. donquijote
UAnaRn/Satz über implizite Funktionen
Status vor 15h 03m 9. rabilein1
S5-7/Maßband-Ausschnitt
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]