matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Reihe sqrt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenz einer Reihe sqrt
Konvergenz einer Reihe sqrt < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe sqrt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:22 Mo 12.04.2010
Autor: TiloW

Aufgabe
Zeige, dass für die Funktion
]0,1] [mm] \to \IR, [/mm] x [mm] \mapsto \bruch{1}{\wurzel{x}} [/mm]
das Unterintegral existiert aber nicht das Oberintegral.

Die Frage habe ich soweit verstanden, dass das Riemann-Oberintegral nicht existiert ist mir klar. Das Unterintegral konnte ich umformen zu:

[mm] \limes_{n\rightarrow\infty}\summe_{i=1}^{n}\bruch{1}{\wurzel{ni}} [/mm]

Nur wie ich die Konvergenz dieser Reihe jetzt zeige ist mir nicht klar.
[mm] \bruch{1}{i} \ge \bruch{1}{\wurzel{ni}} \ge \bruch{1}{n} [/mm] bringt mich leider nicht weiter.. damit weiss ich nur das der Grenzwert irgendwo zwischen 1 und Unendlich liegen muss.

Hoffe mir kann jemand ein Tipp geben :)

MfG
Tilo

        
Bezug
Konvergenz einer Reihe sqrt: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Di 13.04.2010
Autor: HJKweseleit

Weil die Glieder Größer als die der harmonischen Reihe sind, ist der Grenzwert [mm] \infty. [/mm] Was du gebildet hast, ist ja auch so etwas wie das Integral von 0 bis [mm] \infty, [/mm] wobei die "Riemann-Streifen" immer die Breite 1 haben.

Was du zeigen sollst ist aber, dass das Integral von 0 bis 1 in Form der Untersumme existiert. Du musst also die Fläche in immer kleinere Streifen der Dicke 1/n schneiden und mit dem rechten Randwert (= Funktionsminimum der Funktion in diesem Streifen - daher Untersumme) jedes Streifens (= Höhe) multiplizieren. Mit dem linken Randwert (= Funktionsmaximum - daher Obersumme) geht dies nicht beim linken Rand.

Also: Deine Summanden heißen ein bisschen anders und müssen auch noch mit der Intervallbreite multipliziert werden.

Bezug
                
Bezug
Konvergenz einer Reihe sqrt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Di 13.04.2010
Autor: TiloW

Aber das habe ich doch gemacht, hier einmal ausführlich die Untersumme in Abhängigkeit von der Anzal n der Intervalle in die ]0,1] "zerschnitten" wird:

Weil die Funktion auf ]0,1] monoton fallend ist berechnet sich die Untersumme folgendermaßen

[mm] \limes_{a \rightarrow 0}\summe_{i=1}^{n}(\bruch{1-a}{n}\cdot\bruch{1}{\sqrt{a+i \cdot \bruch{1-a}{n}}}) [/mm]

= [mm] \summe_{i=1}^{n}\bruch{1}{n}\cdot\bruch{1}{\sqrt{i \cdot \bruch{1}{n}}} [/mm]

= [mm] \summe_{i=1}^{n}\bruch{1}{\sqrt{i n}} [/mm]

Jetzt ist die Frage was passiert wenn n gegen unendlich geht... oder?!

Und außerdem sind die Glieder nicht größer als die der harmonischen Reihe sondern immer kleiner (siehe ersten Post).

@HJKweseleit: wie sollten die Summanden deiner Meinung nach aussehen?

Bezug
                        
Bezug
Konvergenz einer Reihe sqrt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 Do 15.04.2010
Autor: Gonozal_IX

Hiho,

also erstmal: Ich komm auch auf deine Summe für die Untersumme.

D.h. da steht:

$ [mm] \summe_{i=1}^{n}\bruch{1}{\sqrt{i n}} [/mm] = [mm] \bruch{1}{\sqrt{n}}\summe_{i=1}^{n}\bruch{1}{\sqrt{i}}$ [/mm]

Zeige nun:

[mm] $\summe_{i=1}^{n}\bruch{1}{\sqrt{i}} \le 2\sqrt{n}$ [/mm]

Sowie die gesammte Untersumme ist monoton.

MFG,
Gono.

(Ausser du findest natürlich eine schöne Summenformel für den Kram).

Bezug
                                
Bezug
Konvergenz einer Reihe sqrt: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 Do 15.04.2010
Autor: TiloW

Okay jetzt hab ich's (Induktion!) ..Danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]