matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz zeigen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz zeigen
Konvergenz zeigen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:17 Do 20.07.2017
Autor: DerPinguinagent

Guten Abend,

die Aufgabe an der ich momentan sitze, verlangt, dass ich folgende Reihe

[mm] \summe_{n=1}^{\infty} \bruch{1}{\wurzel[2]{n}} [/mm]

auf Konvergenz untersuche.

Dies würde ich gerne über das Majo- und Minorantenkriterium zeigen.

Sei nun [mm] \bruch{1}{\wurzel[2]{n}} [/mm] die Majorante und [mm] \bruch{1}{n} [/mm] die Minorante, da [mm] \bruch{1}{\wurzel[2]{n}} \ge \bruch{1}{n} [/mm] ist. Da wir wissen, dass die Minorante [mm] \bruch{1}{n} [/mm] divergiert, divergiert auch die Reihe [mm] \bruch{1}{\wurzel[2]{n}}. [/mm] Kann man das so sagen?

LG DerPinguinagent

        
Bezug
Konvergenz zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 03:23 Do 20.07.2017
Autor: X3nion


> Guten Abend,

Guten Abend!

> die Aufgabe an der ich momentan sitze, verlangt, dass ich
> folgende Reihe
>  
> [mm]\summe_{n=1}^{\infty} \bruch{1}{\wurzel[2]{n}}[/mm]
>
> auf Konvergenz untersuche.
>
> Dies würde ich gerne über das Majo- und
> Minorantenkriterium zeigen.
>  
> Sei nun [mm]\bruch{1}{\wurzel[2]{n}}[/mm] die Majorante und
> [mm]\bruch{1}{n}[/mm] die Minorante, da [mm]\bruch{1}{\wurzel[2]{n}} \ge \bruch{1}{n}[/mm]
> ist. Da wir wissen, dass die Minorante [mm]\bruch{1}{n}[/mm]
> divergiert, divergiert auch die Reihe
> [mm]\bruch{1}{\wurzel[2]{n}}.[/mm] Kann man das so sagen?


Vorsicht, es ist weder [mm] \bruch{1}{\wurzel[2]{n}} [/mm] Majorante noch [mm] \bruch{1}{n} [/mm] eine Minorante.

Seien zwei Folgen [mm] (a_{n})_{n\ge m}, (b_{n})_{n \ge m} [/mm] gegeben mit

[mm] |a_{n}| \le b_{n} [/mm] für fast alle n.

a) Sei [mm] \summe_{n=m}^{\infty} c_{n} [/mm] eine konvergente Reihe.
Dann konvergiert die Reihe [mm] \summe_{n=m}^{\infty} a_{n} [/mm] absolut UND dann nennt man [mm] \summe_{n=m}^{\infty} c_{n} [/mm] eine konvergente Majorante an die Reihe [mm] \summe_{n=m}^{\infty} a_{n}. [/mm]

b) Ist hingegen [mm] \summe_{n=m}^{\infty} a_{n} [/mm] divergent, so auch [mm] \summe_{n=m}^{\infty} b_{n} [/mm] und analog nennt man [mm] \summe_{n=m}^{\infty} a_{n} [/mm] eine divergente Minorante an die Reihe [mm] \summe_{n=m}^{\infty} c_{n}. [/mm]

Nun zur Anwendung: Es gilt [mm] \frac{1}{\sqrt{n}} \ge \frac{1}{n} \forall [/mm] n [mm] \in \IN, [/mm] wegen [mm] \frac{1}{\sqrt{n}} \ge \frac{1}{n} [/mm] <=> [mm] \sqrt{n} \le [/mm] n, und letzteres sieht man durch Quadrieren und der Monotonie der Quadratfolge [mm] a_{n} [/mm] := [mm] n^{2} [/mm] ein.

Folglich ist [mm] \summe_{n=1}^{\infty} \frac{1}{n} [/mm] eine divergente Minorante an die Reihe [mm] \summe_{n=1}^{\infty} \frac{1}{\sqrt{n}} [/mm] und Letztere deshalb divergent.


> LG DerPinguinagent

Viele Grüße,
X3nion

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 2h 17m 8. Diophant
ULinAAb/Permutationsgr./ Transposition
Status vor 5h 01m 62. Diophant
MSons/Kann man beim Roulette verlier
Status vor 7h 14m 2. matux MR Agent
DiffGlPar/Abschätzung
Status vor 8h 47m 4. Diophant
UStoc/Geordnete Stichproben mit Wdh.
Status vor 9h 14m 7. matux MR Agent
Algebra/Integritätsbereich Polynomring
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]