matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarproduktePolarzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Skalarprodukte" - Polarzerlegung
Polarzerlegung < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarzerlegung: Korrektur
Status: (Frage) überfällig Status 
Datum: 20:53 Fr 05.07.2013
Autor: Mila007

Aufgabe
Finden Sie die Polarzerlegung A = OP für A= [mm] \pmat{ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 } \in \IR [/mm] 3x3

Hallo,

ich bin gerade dabei diese Aufgabe zu berechnen, aber komm irgendwie nicht auf das richtige Ergebnis. Ich hoffe mir kann einer sagen wo der Fehler liegt.


Zuerst habe ich die ONB bestimmt mit Hilfe des Gram-Schmidt-Verfahrens.
Gesucht sind also B= {v1, v2, v3}

b1 = [mm] \vektor{ 1 \\ 1 \\ 1 } [/mm]
b2 = [mm] \vektor{ 0 \\ 1 \\ 1 } [/mm]
b3 = [mm] \vektor{ 0 \\ 0 \\ 1 } [/mm]

b1 = v1

<v1,v1> = [mm] b1^{t} [/mm] * b1 = 3

v2 = b2 - [mm] \bruch{}{} [/mm] * v1 = [mm] \vektor{- \bruch{2}{3} \\ \bruch{1}{3} \\ \bruch{1}{3}} [/mm]

<v2,v2> = [mm] \vektor{- \bruch{2}{3} \\ \bruch{1}{3} \\ \bruch{1}{3}}^{t} [/mm] *  [mm] \vektor{- \bruch{2}{3} \\ \bruch{1}{3} \\ \bruch{1}{3}} [/mm] = [mm] \bruch{2}{3} [/mm]

v3 = b3 - [mm] \bruch{}{} [/mm] * v2 - [mm] \bruch{}{} [/mm] *v1 = [mm] \vektor{0 \\ - \bruch{1}{2} \\ \bruch{1}{2}} [/mm]

<v3,v3> =  [mm] \vektor{0 \\ - \bruch{1}{2} \\ \bruch{1}{2}}^{t} [/mm] *  [mm] \vektor{0 \\ - \bruch{1}{2} \\ \bruch{1}{2}} [/mm] = [mm] \bruch{1}{2} [/mm]

=> B = ( [mm] \bruch{1}{\wurzel{3}} [/mm] * [mm] \pmat{ 1 \\ 1 \\ 1 } [/mm] , [mm] \bruch{1}{\wurzel{\bruch{2}{3}}} [/mm] * [mm] \vektor{- \bruch{2}{3} \\ \bruch{1}{3} \\ \bruch{1}{3}} [/mm] , [mm] \bruch{1}{\wurzel{\bruch{1}{2}}} [/mm] *  [mm] \vektor{0 \\ - \bruch{1}{2} \\ \bruch{1}{2}} [/mm] )

dann habe ich die Matrix P = [mm] \pmat{ a & b & c \\ 0 & d & e \\ 0 & 0 & f } [/mm] bestimmt.

[mm] \vektor{ 1 \\ 1 \\ 1 } [/mm] = a * [mm] \bruch{1}{\wurzel{3}} [/mm] * [mm] \vektor{ 1 \\ 1 \\ 1 } [/mm]
=> a = [mm] \wurzel{3} [/mm]

[mm] \vektor{ 0 \\ 1 \\1 } [/mm] = b * [mm] \bruch{1}{\wurzel{3}} [/mm] * [mm] \vektor{ 1 \\ 1 \\ 1 } [/mm] + c * [mm] \bruch{1}{\wurzel{\bruch{2}{3}}} [/mm] * [mm] \vektor{- \bruch{2}{3} \\ \bruch{1}{3} \\ \bruch{1}{3}} [/mm]
=> b = [mm] \bruch{2* \wurzel{3}}{3} [/mm]
=> c = [mm] \bruch{\wurzel{6}}{3} [/mm]

[mm] \vektor{ 0 \\ 0 \\ 1 } [/mm] = d* [mm] \bruch{1}{\wurzel{3}} [/mm] * [mm] \pmat{ 1 \\ 1 \\ 1 } [/mm] + e* [mm] \bruch{1}{\wurzel{\bruch{2}{3}}} [/mm] * [mm] \vektor{- \bruch{2}{3} \\ \bruch{1}{3} \\ \bruch{1}{3}} [/mm] + f* [mm] \bruch{1}{\wurzel{\bruch{1}{2}}} [/mm] *  [mm] \vektor{0 \\ - \bruch{1}{2} \\ \bruch{1}{2}} [/mm]
=> d = [mm] \bruch{\wurzel{3}}{3} [/mm]
=> e = [mm] \bruch{\wurzel{6}}{6} [/mm]
=> f = [mm] \bruch{\wurzel{2}}{2} [/mm]

Somit hab ich P = [mm] \pmat{ \wurzel{3} & \bruch{2* \wurzel{3}}{3} & \bruch{\wurzel{6}}{3} \\ 0 & \bruch{\wurzel{3}}{3} & \bruch{\wurzel{6}}{6} \\ 0 & 0 & \bruch{\wurzel{2}}{2} } [/mm]




Aber bei der Probe O*P kommt A nicht raus.

Danke und Liebe Grüße,

Mila




        
Bezug
Polarzerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 So 07.07.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 11h 35m 15. X3nion
UAnaR1FolgReih/Weierstraß Approximationssatz
Status vor 12h 32m 1. derbierbaron
UAuslg/Amann Escher , Analysis 1
Status vor 16h 53m 10. Al-Chwarizmi
LaTeX/Graphenverlauf "verfeinern"
Status vor 1d 18h 55m 7. matux MR Agent
UFina/Interner Zinsfuß
Status vor 2d 7. Al-Chwarizmi
S8-10/Logarithmusgleichung
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]