matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisPotenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Complex Analysis" - Potenzreihe
Potenzreihe < Complex Analysis < Uni-Calculus < University < Maths <
View: [ threaded ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ all forums  | ^ Tree of Forums  | materials

Potenzreihe: Frage (beantwortet)
Status: (Question) answered Status 
Date: 00:50 So 16/07/2017
Author: Herzblatt

Aufgabe
Sei f: [mm] \IC \setminus [/mm] {2} [mm] \to \IC [/mm] definiert als [mm] f(z)=\frac{z^2}{z-2}. [/mm] Finde eine Potenzreihe, sodass f(z)= [mm] \sum_{k\ge 0} a_k*(z-1)^k [/mm]

Als Tipp gibt und der Prof, dass man die geometrische Reihe benutzen soll und das z= 1+ (z-1)

Habe bis jetzt:
[mm] f(z)=\frac{1+(z-1)}{1-\frac{2}{z}} [/mm]
= [mm] \sum_{k\ge 0}\left( \bruch{2}{z} \right)^k [/mm] + (z-1) [mm] *\sum_{k\ge 0} \left( \bruch{2}{z} \right)^k [/mm]
=z* [mm] \sum_{k\ge 0}\left( \bruch{2}{z} \right)^k [/mm]
= [mm] \sum_{k\ge 0} z*\left( \bruch{2}{z} \right)^k [/mm]

Stimmt das bis jetzt?
Bin mir unsicher, weil der Betrag von  q bei einer geometrischen Reihe ja kleiner als eins sein muss, damit man das so schreiben kann wie ich es gemacht habe. Das heisst z>2 damit das so geht wie ich es gemacht habe....
ausserdem komme ich nicht dadrauf wie man den Faktor (z-1) hinkriegt....
Waere super, wenn mir jemand auf die Sprünge helfen könnte :-)

Euer Herzblatt

        
Bezug
Potenzreihe: Antwort
Status: (Answer) finished Status 
Date: 10:16 So 16/07/2017
Author: fred97

Es ist

[mm] $\frac{z^2}{z-2}=\frac{(z-1+1)^2}{(z-1)-1}=-\frac{(z-1)^2+2(z-1)+1}{1-(z-1)}$. [/mm]

Kommst Du damit weiter ?

Bezug
                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Question) answered Status 
Date: 00:16 Mo 17/07/2017
Author: Herzblatt


> Es ist
>
> [mm]\frac{z^2}{z-2}=\frac{(z-1+1)^2}{(z-1)-1}=-\frac{(z-1)^2+2(z-1)+1}{1-(z-1)}[/mm].
>  
> Kommst Du damit weiter ?

Ah super, das erklärt schon mal wie ich auf [mm] (z-1)^k [/mm] komme. aber teile ich das jetzt auf? Ich haette dann

[mm][mm] \frac{z^2}{z-2}=\frac{(z-1+1)^2}{(z-1)-1}=-\frac{(z-1)^2+2(z-1)+1}{1-(z-1)}=-\frac{(z-1)^2}{1-(z-1)}+\frac{2(z-1)}{1-(z-1)}+\frac{1}{1-(z-1)}=-(z-1)^2 \sum_{k\ge0} (z-1)^k +2(z-1)\sum_{k\ge 0} (z-1)^k+\sum_{k\ge 0} (z-1)^k/mm] [/mm]
aber wie fasse ich das jetzt zusammen?ziehe ich 2*(z-1) bzw. [mm] -(z-1)^2 [/mm] in die Summe, so wird das [mm] a_k [/mm] nicht unabhängig von z sein....

Bezug
                        
Bezug
Potenzreihe: Antwort
Status: (Answer) finished Status 
Date: 19:05 Mo 17/07/2017
Author: leduart

Hallo
1. ziehe die Potenzen in die Summen , dann schreibe wieder alles in eine Summe, indem du nach Potenzen von (z-1) ordnest! dann suche wie jetzt [mm] a_0 [/mm] bis [mm] a_4 [/mm] aussieht.
Gruß leduart

Bezug
                                
Bezug
Potenzreihe: Mitteilung
Status: (Statement) No reaction required Status 
Date: 16:37 So 23/07/2017
Author: Herzblatt


> Hallo
>   1. ziehe die Potenzen in die Summen , dann schreibe
> wieder alles in eine Summe, indem du nach Potenzen von
> (z-1) ordnest! dann suche wie jetzt [mm]a_0[/mm] bis [mm]a_4[/mm] aussieht.
>  Gruß leduart


Super, danke habs geschafft :-)



Bezug
View: [ threaded ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 1h 33m 2. Diophant
UAnaR1FolgReih/Grenzwert nte Wurzel
Status vor 14h 01m 11. fred97
ULinAMat/Gruppe der inv. Matrizen
Status vor 3d 11. Al-Chwarizmi
STrigoFktn/Cosinus und Arc Cosinus
Status vor 3d 7. Diophant
UAnaR1FunkStetig/Stetigkeit im Nullpunkt
Status vor 5d 1. Prospekthuellen
UStoc/Galton-Watson mit max. Höhe
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]