matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:25 So 19.11.2017
Autor: Franzi17

Aufgabe
(a) Untersuchen Sie, ob die Funktionen
f(x) =     [mm] sin^2(x) [/mm] /(1−cos(x))  für x ∈ [-pi,pi] \ {0}
                             2 für x = 0

und g(x) =       ( [mm] 4^x [/mm] −1)/ x für x [mm] \in \IR [/mm] ohne 0
                                            ln(4)  für x = 0

stetig auf dem ganzen Definitionsbereich sind.



Hallo,
ich  wäre froh um einen Tipp wie man da heran gehen kann.
Bei a.)
Ich weiss dass [mm] sin^2(x)/(1-cos(x)) [/mm] stetig ist auf den Intervallen [-pi, 0) und (0, pi]

da sin(x) stetig -> [mm] sin^2(x) [/mm] stetig
1 stetig, cos(x) stetig, also 1-cos(x) stetig und
der Nenner kann in dem Intervall nicht 0 werden, also ist der Bruch stetig

Aber wie zeige / oder widerlege ich Stetigkeit im ganzen Definitionsbereich?

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 So 19.11.2017
Autor: fred97


> (a) Untersuchen Sie, ob die Funktionen
>   f(x) =     [mm]sin^2(x)[/mm] /(1−cos(x))  für x
> ∈ [-pi,pi] \ {0}
> 2 für x = 0
>
> und g(x) =       ( [mm]4^x[/mm] −1)/ x für x
> [mm]\in \IR[/mm] ohne 0
> ln(4)  für x = 0
>
> stetig auf dem ganzen Definitionsbereich sind.
>  
>
> Hallo,
> ich  wäre froh um einen Tipp wie man da heran gehen kann.
> Bei a.)
>  Ich weiss dass [mm]sin^2(x)/(1-cos(x))[/mm] stetig ist auf den
> Intervallen [-pi, 0) und (0, pi]
>  
> da sin(x) stetig -> [mm]sin^2(x)[/mm] stetig
>  1 stetig, cos(x) stetig, also 1-cos(x) stetig und
>  der Nenner kann in dem Intervall nicht 0 werden, also ist
> der Bruch stetig
>  
> Aber wie zeige / oder widerlege ich Stetigkeit im ganzen
> Definitionsbereich?


Es ist ja nur noch die Frage, ob f in x=0 stetig  ist.

Dazu  berechne den Limes von f für [mm] x\to [/mm] 0. Ist der =2, so ist f stetig, andernfalls nicht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 2h 14m 14. Tipsi
IntTheo/Flächenmaß berechnen
Status vor 2h 52m 4. leduart
Algebra/Gleichung auflösen
Status vor 3h 58m 7. Tipsi
UAnaR1FunkInt/Faltungen abschätzen
Status vor 4h 01m 2. Al-Chwarizmi
z-transformation/z transformation und dann?
Status vor 5h 20m 3. Teekanne3d
UAnaR1FolgReih/Potenzreihe
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]