matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWahrscheinlichkeiten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeiten
Wahrscheinlichkeiten < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeiten: Münze
Status: (Frage) beantwortet Status 
Datum: 17:30 Do 25.09.2008
Autor: Julia1988

Aufgabe
4 a) Eine Münze wird zweimal geworfen. Bestimme für das Ergebnis (1) einmal Wappen; (2) mindestens einmal Wappen.

b) Eine Münze wird dreimal geworfen. Welche Wahrscheinlichkeiten hat das Ergebnis
(1) mehr als 2- mal Wappen; (2) höchstens 2- mal Wappen;
(3) mindestens 1- mal Wappen; (4) genau 1- mal Wappen.

Ich hatte die Aufgabe in der Schule angefangen. Meine Ergebnisse: 4 a) (1) 2/4= 50 %   (2) 3/4= 75%  
b) (1) 3/2= 15%  
Ichw eiß das es die Möglichkeit gibt das mit einer Zeichnung (baum) zu berechnen. Ich finde den Weg kompliziert und hatte es anders berchnet, indem ich mir einfach immer die möglichen Reinfolgen aufgeschriben habe und dann zusammengezählt (WWZ; Z.B.).
Das blöde ist, dass ich gar nicht mehr weiß wie man das rechnet. kann mir jemand helfen. so kann ich die aufgaben nicht fertig machen.

        
Bezug
Wahrscheinlichkeiten: a)
Status: (Antwort) fertig Status 
Datum: 17:47 Do 25.09.2008
Autor: Disap

Guten Abend!

> 4 a) Eine Münze wird zweimal geworfen. Bestimme für das
> Ergebnis (1) einmal Wappen; (2) mindestens einmal Wappen.
>  
> b) Eine Münze wird dreimal geworfen. Welche
> Wahrscheinlichkeiten hat das Ergebnis
>  (1) mehr als 2- mal Wappen; (2) höchstens 2- mal Wappen;
>  (3) mindestens 1- mal Wappen; (4) genau 1- mal Wappen.
>  Ich hatte die Aufgabe in der Schule angefangen. Meine
> Ergebnisse: 4 a) (1) 2/4= 50 %   (2) 3/4= 75%  

Die sind richtig [daumenhoch]

> b) (1) 3/2= 15%  
> Ichw eiß das es die Möglichkeit gibt das mit einer
> Zeichnung (baum) zu berechnen. Ich finde den Weg
> kompliziert und hatte es anders berchnet, indem ich mir
> einfach immer die möglichen Reinfolgen aufgeschriben habe
> und dann zusammengezählt (WWZ; Z.B.).
>  Das blöde ist, dass ich gar nicht mehr weiß wie man das
> rechnet. kann mir jemand helfen. so kann ich die aufgaben
> nicht fertig machen.


Bezug
        
Bezug
Wahrscheinlichkeiten: b)
Status: (Antwort) fertig Status 
Datum: 17:54 Do 25.09.2008
Autor: Disap


> 4 a) Eine Münze wird zweimal geworfen. Bestimme für das
> Ergebnis (1) einmal Wappen; (2) mindestens einmal Wappen.
>  
> b) Eine Münze wird dreimal geworfen. Welche
> Wahrscheinlichkeiten hat das Ergebnis
>  (1) mehr als 2- mal Wappen; (2) höchstens 2- mal Wappen;
>  (3) mindestens 1- mal Wappen; (4) genau 1- mal Wappen.
>  Ich hatte die Aufgabe in der Schule angefangen. Meine
> Ergebnisse: 4 a) (1) 2/4= 50 %   (2) 3/4= 75%  
> b) (1) 3/2= 15%  

3/2 sind schon größer 1 oder?

> Ichw eiß das es die Möglichkeit gibt das mit einer
> Zeichnung (baum) zu berechnen. Ich finde den Weg
> kompliziert und hatte es anders berchnet, indem ich mir
> einfach immer die möglichen Reinfolgen aufgeschriben habe
> und dann zusammengezählt (WWZ; Z.B.).
>  Das blöde ist, dass ich gar nicht mehr weiß wie man das
> rechnet. kann mir jemand helfen. so kann ich die aufgaben
> nicht fertig machen.

Na ja, ich finde das eigentlich richtig, was du machst
1) WWW, drei Mal Wappen, du wirfst ja nur drei Mal und es sollen mehr als 2 Mal Wappen kommen?

Wie groß ist die Wahrscheinlichkeit, dass hier drei Wappen kommen?

P("Wappen") = 1/2

Und die WKs musst du multiplizieren

P("WWW") = 1/2*1/2*1/2

2) höchstens zwei mal Wappen, da kannst du dir das Leben einfach machen,
du willst jetzt wissen: WK für kein Wappen, für ein Wappen oder für zwei Wappen bei drei mal Werfen.
Welches andere Ereignis bleibt noch? Na ja, drei mal Wappen zu werfen.
Du kannst hier also mit dem Gegenereignis rechnen
P("höchstens zwei Wappen") = 1-P("drei mal Wappen")

3) Mindestens 1 mal Wappen. Kannst du das mit den Fällen 1) und 2) dir selbst erarbeiten? Du nimmst hier einfach das Gegenereignis, 1- p("Genau kein Wappen")

4) Es bleiben die Kombinationen WZZ, ZWZ, ZZW

Die sind alle drei gleichwahrscheinlich, d.h. du musst jetzt nur die WK für ein solches Ereignis ausrechnen und dann rechnen
3*P("ZZW")



Münzenaufgaben sind unglücklich, weil es nur zwei mögliche Ereignisse bei einem Wurf gibt, Z oder W, die auch noch dieselbe WK von 0.5 haben.
ob du nun WW oder ZW erhälst, das ist dieselbe Wahrscheinlichkeit.

Falls du dich darüber gewundert hast :)

Viele Grüße
Disap


Bezug
                
Bezug
Wahrscheinlichkeiten: münzen
Status: (Frage) beantwortet Status 
Datum: 18:33 Do 25.09.2008
Autor: Julia1988

Aufgabe
siehe oben

ok danke. für die wahrscheinlichkeit von drei mal wappen hätte ich dann 12,5% raus. stimmt das ? ich weiß nämlich nicht genau wie man brüche multipliziert (-:

Bezug
                        
Bezug
Wahrscheinlichkeiten: Richtig!
Status: (Antwort) fertig Status 
Datum: 18:35 Do 25.09.2008
Autor: Loddar

Hallo Julia!


>  ok danke. für die wahrscheinlichkeit von drei mal wappen
> hätte ich dann 12,5% raus. stimmt das ?

[ok] Ja.


> ich weiß nämlich nicht genau wie man brüche multipliziert (-:

Na holla ... "Zähler mal Zähler" und "Nenner mal Nenner".


Gruß
Loddar



Bezug
                                
Bezug
Wahrscheinlichkeiten: Ergebnisse Überprüfung
Status: (Frage) beantwortet Status 
Datum: 16:06 Sa 27.09.2008
Autor: Julia1988

Aufgabe
siehe oben

ich habe die aufgaben jetzt gerchnet. ich wäre dankbar wenn jemand guckt ob die ergbenisse hinkommen. in letzter zeit waren meine ergebnisse im unterricht oft falsch, deswegen bin ich etwas verunsichert.
a) (1) 2/4= 50%
   (2) 3/4= 75%

b) (1) 1/8= 12,5%
   (2) 6/8= 75%
   (3) 7/8= 87,5%
   (4) 3/8= 37,5%

Bezug
                                        
Bezug
Wahrscheinlichkeiten: Okay
Status: (Antwort) fertig Status 
Datum: 16:25 Sa 27.09.2008
Autor: Infinit

Hallo Julia,
Deine Rechnungen sind okay, übe aber vorsichtshalber nochmal das Aufschreiben bzw. Bestimmen der einzelnen Fälle. Das ist meistens der schwierigere Schritt, nicht das Multiplizieren von ein paar Zahlen.
Toi, toi, toi,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 0m 1. ac1989
UAuslg/Elementare Definierbarkeit
Status vor 4m 9. RussellFrege
UTopoGeo/Kuratowski-Axiome
Status vor 10m 3. fred97
UAnaR1FunkDiff/Taylorpolynom
Status vor 13m 13. Gina2013
UAnaR1/Maximum, Minimum
Status vor 26m 4. leduart
UAnaR1FunkInt/Kurvenintegral Kegeldeckfläche
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]