matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikWahrscheinlichkeitsrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stochastik" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: Idee/Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:21 Fr 03.11.2017
Autor: Michelitho

Aufgabe
In einer Allee stehen 12 Bäume in einer Reihe, davon sind 6 erkrankt. Wie groß ist unter der Annahme, dass die Bäume unabhängig voneinand erkrank werden, die Wahrscheinlichkeit, dass die erkrankten Bäume alle nebeneinander stehen? (Geben Sie auch den Wahrscheinlichkeitsraum an!) Welche Wahrscheinlichkeit erhalten Sie für das oben genannte Ereignis (die erkrankten Bäume stehen alle nebeneinander),wenn in der Allee n Bäume in einer Reihe stehen und von diesen k erkrankt sind?

Ich tue mich sehr schwer den Wahrscheinlichkeitsraum aufzustellen, da ich keine Idee habe, wie ich formulieren kann, dass sie nebeneinanderstehen sollen/müssen. Habe zwei Varianten erarbeitet 1. Omega={w1,w2,...,w12|wi [mm] \in [/mm] {krank,gesund} für i=1,2,...,12} 2. Omega={w1,w2,...,w6|wi [mm] \in [/mm] {1,2,...,12} für i=1,2,...,6} Ich weiß, bereits, dass es 7 Möglichkeiten gibt die 6 kranken Bäume bei den 12 Bäumen nebeneinander stehen zu lassen. Habe auch bereits erarbeitet, dass es n+1-k/n über k die entsprechende Wahrscheinlichkeit ist, aber wie ich das in meinem Omega definiere ist mir leider schleierhaft. Vielen Dank im Vorraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:45 Sa 04.11.2017
Autor: angela.h.b.


> In einer Allee stehen 12 Bäume in einer Reihe, davon sind
> 6 erkrankt. Wie groß ist unter der Annahme, dass die
> Bäume unabhängig voneinand erkrank werden, die
> Wahrscheinlichkeit, dass die erkrankten Bäume alle
> nebeneinander stehen? (Geben Sie auch den
> Wahrscheinlichkeitsraum an!)

Hallo,

[willkommenmr].

Ich habe mir den Wahrscheinlichkeitsraum so überlegt - für Kritik bin ich durchaus offen:

Die sechs erkrankten Bäume können an 6 von 12 möglichen Positionen stehen.
Also kann ich als Wahrscheinlichkeitsraum die 6-elementigen Teilmengen von [mm] \{1,2,...,11,12\} [/mm] nehmen:

[mm] \Omega=\{A\subseteq\{1,2,...,11,12\}| |A|=6\}, [/mm]
[mm] |\Omega|=\vektor{12\\6}. [/mm]

Die für die Aufgabenstellung günstigen Ereignisse sind die 7 Teilmengen, die aufeinander folgende Zahlen enthalten,

und damit ist man dann auch schon bei der von Dir ermittelten Wahrscheinlichkeit,
welche Du möglicherweise mit ganz anderen Überlegungen gefunden hast.

LG Angela


> Welche Wahrscheinlichkeit
> erhalten Sie für das oben genannte Ereignis (die
> erkrankten Bäume stehen alle nebeneinander),wenn in der
> Allee n Bäume in einer Reihe stehen und von diesen k
> erkrankt sind? [...]
>  Ich weiß, bereits, dass
> es 7 Möglichkeiten gibt die 6 kranken Bäume bei den 12
> Bäumen nebeneinander stehen zu lassen. Habe auch bereits
> erarbeitet, dass es n+1-k/n über k die entsprechende
> Wahrscheinlichkeit ist
Bezug
                
Bezug
Wahrscheinlichkeitsrechnung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:14 Sa 04.11.2017
Autor: Michelitho

Erstmal vielen Dank für die nette Begrüßung und für die Antwort. Eines erschließt sich mir aus Deiner Antwort/Idee nicht. Wenn |A|=6 warum sagt das aus, dass die Bäume nebeneinander stehen. A={1,3,5,7,9,11} ist |A|=6 und Teilmenge von Omega, aber die Bäume stehen nicht nebeneinander. Oder bin ich da auf dem falschen Weg? Viele Grüße

Bezug
                        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Sa 04.11.2017
Autor: Diophant

Hallo,

> Erstmal vielen Dank für die nette Begrüßung und für die
> Antwort. Eines erschließt sich mir aus Deiner Antwort/Idee
> nicht. Wenn |A|=6 warum sagt das aus, dass die Bäume
> nebeneinander stehen.

Das sagt es nicht aus, sondern es sagt aus, dass es 6 Bäume sind und dient einfach der Definition des Wahrscheinlichkeitsraumes.

> A={1,3,5,7,9,11} ist |A|=6 und
> Teilmenge von Omega, aber die Bäume stehen nicht
> nebeneinander. Oder bin ich da auf dem falschen Weg?

angela.h.b. hat dir doch

- [mm] |\Omega| [/mm] angegeben
- die Anzahl der günstigen Ergebnisse genannt. Was ist denn jetzt noch unklar?


Gruß, Diophant

Bezug
                        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Sa 04.11.2017
Autor: angela.h.b.


> Erstmal vielen Dank für die nette Begrüßung und für die
> Antwort. Eines erschließt sich mir aus Deiner Antwort/Idee
> nicht. Wenn |A|=6 warum sagt das aus, dass die Bäume
> nebeneinander stehen. A={1,3,5,7,9,11} ist |A|=6 und
> Teilmenge von Omega, aber die Bäume stehen nicht
> nebeneinander. Oder bin ich da auf dem falschen Weg?

So ganz auf dem falschen Weg bist Du nicht.
[mm] \Omega [/mm] enthält sämtliche möglichen Positionen, auf denen die 6 kranken Bäume stehen können - völlig unabhängig davon, ob sie nebeneinanderstehen oder nicht. In [mm] \Omega [/mm] sind natürlich auch die sieben 6-elementigen Teilmengen enthalten, die anzeigen, daß die Bäume nebeneinanderstehen.

Und mit [mm] "Wahrscheinlichkeit=\bruch{Anzahl\quad der\quad guenstigen\quad Moeglichkeiten}{Anzahl\quad der\quad Moeglichkeiten}" [/mm]
bekommst Du die Wahrscheinlichkeit - welche man sich aber auch mit anderen Überlegungen hätte erschließen können.

LG Angela





> Viele
> Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 40m 5. fred97
MaßTheo/Metrischer Raum, Offene Mengen
Status vor 9h 50m 3. Gonozal_IX
SIntRech/Stammfunktion/Integralfunktion
Status vor 10h 36m 2. matux MR Agent
OpRe/Reihenfolgeproblem
Status vor 12h 48m 56. HJKweseleit
MSons/Kann man beim Roulette verlier
Status vor 17h 03m 4. M.Rex
UDiskrMath/Türme von Hanoi (4Stäbe)
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]