matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieab^p - ba^p mod 6p = 0
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - ab^p - ba^p mod 6p = 0
ab^p - ba^p mod 6p = 0 < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ab^p - ba^p mod 6p = 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Mo 07.11.2016
Autor: MarcHe

Aufgabe
Sei p > 3. Zeige, dass [mm] $ab^{p}-ba^{p}\equiv [/mm] 0 (mod 6p)$.

Hallo,

hier mein Lösungsvorschlag: Da $ggT(2,3,p) = 0$ kann ich folgende drei Kongruenzen überprüfen:

1. [mm] $ab^{p}-ba^{p}\equiv ab(b^{p-1}-a^{p-1})\equiv [/mm] 0 (mod 2)$: Wenn $2|a$ oder $2|b$ dann fertig. Wenn nicht, folgt [mm] $(2n+1)^{p-1}\equiv (2m+1)^{p-1}\equiv [/mm] 1 (mod 2)$, sodass [mm] $2|(b^{p-1}-a^{p-1})$. [/mm]

2. [mm] $ab^{p}-ba^{p}\equiv ab(b^{p-1}-a^{p-1})\equiv [/mm] 0 (mod 3)$: Wenn $3|a$ oder $3|b$ dann fertig. Wenn nicht, ... ? wie kann ich zeigen, dass dann immer [mm] $a^{p-1} \equiv [/mm] 1 (mod 3)$?

3. [mm] $ab^{p}-ba^{p}\equiv ab(b^{p-1}-a^{p-1})\equiv [/mm] 0 (mod p)$: Wenn $p|a$ oder $p|b$ dann fertig. Wenn nicht, folgt nach Fermat [mm] $b^{p-1}\equiv a^{p-1}\equiv [/mm] 1 (mod p)$, sodass [mm] $p|(b^{p-1}-a^{p-1})$. [/mm]

Bei $mod 3$ brauche ich nochmal Hilfe. Passt das sonst so?



        
Bezug
ab^p - ba^p mod 6p = 0: Antwort
Status: (Antwort) fertig Status 
Datum: 08:20 Di 08.11.2016
Autor: hippias

Das ist soweit alles gut gemacht. Die Lücke im Beweis kannst Du mit Überlegungen ähnlich wie im Fall mit der Teilbarkeit durch $2$ schliessen. Illustrativ könnte sein, wenn Du Dir die Elemente in [mm] $\IZ/3\IZ$ [/mm] aufzählst und Potenzen der Elemente berechnest.

Bezug
                
Bezug
ab^p - ba^p mod 6p = 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Di 08.11.2016
Autor: MarcHe

Ok, ich habe folgenden Vorschlag dank deiner Hilfe:

Wenn $3$ nicht $ab$ teilt, dann entweder [mm] $(3n+1)^{p-1}\equiv (3m+1)^{p-1}≡1 [/mm] (mod 3)$, oder da $p-1=2k$ gilt [mm] $(3n+2)^{2k}\equiv (3n+2)*…*(3n+2)\equiv 2^{2k} \equiv 4^k\equiv [/mm] 1 (mod 3)$, sodass [mm] $3|(b^{p-1}-a^{p-1})$, [/mm] also [mm] $p|ab^{p}-ba^{p}$. [/mm]

Ist das so richtig?

Bezug
                        
Bezug
ab^p - ba^p mod 6p = 0: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Mi 09.11.2016
Autor: hippias

Ja. Die Idee von HJKweseleit finde ich aber noch besser, da eine zusätzliche Fallunterscheidung so nicht nötig ist.

Bezug
        
Bezug
ab^p - ba^p mod 6p = 0: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Di 08.11.2016
Autor: HJKweseleit

Setze in deinem 3. Beweis einfach p=3.

falsche Antwort, s. mein nächster Beitrag.

Bezug
                
Bezug
ab^p - ba^p mod 6p = 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Di 08.11.2016
Autor: MarcHe

Wenn ich doch $p=3$ gesetzt habe, dann kann dich doch nicht zeigen, dass [mm] $a^{p-1} [/mm] mod 3 = 1$ ist, oder?

Bezug
                        
Bezug
ab^p - ba^p mod 6p = 0: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Mi 09.11.2016
Autor: HJKweseleit


> Wenn ich doch [mm]p=3[/mm] gesetzt habe, dann kann dich doch nicht
> zeigen, dass [mm]a^{p-1} mod 3 = 1[/mm] ist, oder?

Ja, du hast Recht!

Die 3 hat ja mit dem p gar nichts zu tun, das hatte ich verwechselt.

Also nehmen wir deine 1. Zeile:

1. $ [mm] ab^{p}-ba^{p}\equiv ab(b^{p-1}-a^{p-1})\equiv [/mm] 0 (mod 3) $: Wenn $ 3|a $ oder $ 3|b $ dann fertig. Wenn nicht, folgt $ [mm] (3n\pm 1)^{p-1}\equiv (3m\pm 1)^{p-1}\equiv [/mm] \ 1 (mod 3) $, sodass $ [mm] 3|(b^{p-1}-a^{p-1}) [/mm] $.

Bemerkung: [mm] (3m\pm 1)^{p-1}\equiv [/mm] +1 (mod 3), weil p-1 gerade ist und deshalb [mm] (\pm 1)^{p-1} [/mm] = +1 ergibt.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]