matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10ges Funktion durch Bedingungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - ges Funktion durch Bedingungen
ges Funktion durch Bedingungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ges Funktion durch Bedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 Do 03.11.2016
Autor: RobKobin

Hallo,

Da ich die Erfahrung gemacht habe dass meine Skizzen mehr verwirren als helfen, hier alles als Sätze ausgedrückt.

Ich suche die Funktion [mm]f(x)[/mm].

[mm]f(x)[/mm] ist eine Funktion zweiten Grades.
[mm]f(x)[/mm] und die Funktion zweiten Grades [mm]g(x)[/mm] haben einen Berührungspunkt.
Dieser Punkt liegt bei [mm]( d | \wurzel{d^2+k^2} )[/mm].
Die Steigung beider Funktionen an diesem Punkt ist [mm]v_y/v_x[/mm].
[mm]v_y[/mm] is gleich [mm]\wurzel{(h+k-\wurzel{d^2+k^2})*2*9,81}[/mm].
[mm]g(0)[/mm] hat den Wert [mm]k-a[/mm]
[mm]g'(0)[/mm] hat den Wert [mm]0[/mm].

Bekannt ist: [mm]k, h, v_x, a[/mm]
Unbekannt ist: [mm]d, v_y, f(x), g(x)[/mm]
Gesucht ist: [mm]f(x)[/mm]

Hinweise: [mm]f(x)[/mm] ist eine nach unten geöffnete Parabel und [mm]g(x)[/mm] eine nach oben geöffnete Parabel. Außerdem sind die genannten Stellen und Werte positiv.

Reichen die Angaben um meine Aufgabe zu lösen?

        
Bezug
ges Funktion durch Bedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Do 03.11.2016
Autor: abakus


> Hallo,
>  
> Da ich die Erfahrung gemacht habe dass meine Skizzen mehr
> verwirren als helfen, hier alles als Sätze ausgedrückt.
>  
> Ich suche die Funktion [mm]f(x)[/mm].
>  
> [mm]f(x)[/mm] ist eine Funktion zweiten Grades.
>  [mm]f(x)[/mm] und die Funktion zweiten Grades [mm]g(x)[/mm] haben einen
> Berührungspunkt.
>  Dieser Punkt liegt bei [mm]( d | \wurzel{d^2+k^2} )[/mm].
>  Die
> Steigung beider Funktionen an diesem Punkt ist [mm]v_y/v_x[/mm].
>  [mm]v_y[/mm] is gleich [mm]\wurzel{(h+k-\wurzel{d^2+k^2})*2*9,81}[/mm].
>  [mm]g(0)[/mm] hat den Wert [mm]k-a[/mm]
>  [mm]g'(0)[/mm] hat den Wert [mm]0[/mm].
>  
> Bekannt ist: [mm]k, h, v_x, a[/mm]
>  Unbekannt ist: [mm]d, v_y, f(x), g(x)[/mm]
>  
> Gesucht ist: [mm]f(x)[/mm]
>  
> Hinweise: [mm]f(x)[/mm] ist eine nach unten geöffnete Parabel und
> [mm]g(x)[/mm] eine nach oben geöffnete Parabel. Außerdem sind die
> genannten Stellen und Werte positiv.
>  
> Reichen die Angaben um meine Aufgabe zu lösen?

g hat also den Scheitelpunkt auf der y-Achse im Punkt (0|k-a).
Die Gleichung von g(x) hat also die Form g(x)=c*x²+(k-a).
Bestimme zunächst den Streckungsfaktor c so, dass g(x) tatsächlich durch den Punkt [mm]( d | \wurzel{d^2+k^2} )[/mm] verläuft.
Wenn du damit die komplette Funktionsgleichung von g hast, kannst du auch den Anstieg von g (und damit auch von f) an der Stelle x=d berechnen.

Die Funktion f ist aber nicht eindeutig bestimmt, denn man kennt nur zwei statt der erforderlichen 3 Bedingungen.

Bezug
                
Bezug
ges Funktion durch Bedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 Fr 04.11.2016
Autor: RobKobin

Danke für die Antwort!

Dann eine andere Idee:

Kann ich eine Funktion dritten Grades aus folgenden Informationen herleiten?

f(0)=k-a
f'(0)=0
Der Wendepunkt ist vom Nullpunkt k entfernt und liegt im ersten Quadrant.
f'''(x)>0
Zwischen Wendepunkt und Hochpunkt liegt der Punkt A im ersten Quadrant mit dem Wert k und der Steigung s.

Besonders interessiert mich die Stelle vom Punkt A

Bezug
                        
Bezug
ges Funktion durch Bedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Fr 04.11.2016
Autor: abakus


> Danke für die Antwort!
>  
> Dann eine andere Idee:
>  
> Kann ich eine Funktion dritten Grades aus folgenden
> Informationen herleiten?
>  
> f(0)=k-a
>  f'(0)=0
>  Der Wendepunkt ist vom Nullpunkt k entfernt und liegt im
> ersten Quadrant.
>  f'''(x)>0
>  Zwischen Wendepunkt und Hochpunkt liegt der Punkt A im
> ersten Quadrant mit dem Wert k und der Steigung s.
>  
> Besonders interessiert mich die Stelle vom Punkt A  

Bitte werde konkreter.
Klar ist:
1) f(0)=k-a
2) f'(0)=0
Unklar ist:
">  Der Wendepunkt ist vom Nullpunkt k entfernt
Ist damit der tatsächliche Abstand (Länge einer "schrägen" Strecke) gemeint? Und ist der "Nullpunkt" eine Umschreibung für "Koordinatenursprung"?

>  Zwischen Wendepunkt und Hochpunkt liegt der Punkt A im
> ersten Quadrant mit dem Wert k und der Steigung s.

Ist mit "Wert k" die y-Koordinate des Punktes A gemeint?

Unabhängig von deinen Antworten:
Wegen den ersten zwei Bedingungen und der Forderung "Funktion dritten Grades" hat deine Funktion die Form
f(x)=const*(x-(k-a))²*(x-andereNullstelle).
(Ich habe jetzt keine Muße, den vorherigen Thread noch mal durchzuarbeiten, welche Buchstaben schon als Bezeichner für Variablen und Parameter verwendet wurden. Um Dopplungen zu vermeiden, habe ich hier "const" und "andereNullstelle" verwendet. Du kannst dafür unverfängliche Buchstaben einsetzen.
Multipliziere das mal aus und bestimme mit diesem Ansatz die Wendestelle. Vielleicht kommst du damit weiter.

Bezug
                                
Bezug
ges Funktion durch Bedingungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Fr 04.11.2016
Autor: RobKobin

>Ist damit der tatsächliche Abstand (Länge einer "schrägen" Strecke) gemeint? Und ist der "Nullpunkt" eine Umschreibung für "Koordinatenursprung"?
ja.

>Ist mit "Wert k" die y-Koordinate des Punktes A gemeint?
ja.

>welche Buchstaben schon als Bezeichner für Variablen und Parameter verwendet wurden
Die sind unabhängig vom Anfangsposting.

Das hat mir schon weitergeholfen, danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 19m 7. Tipsi
UAnaR1FunkInt/Faltungen abschätzen
Status vor 22m 2. Al-Chwarizmi
z-transformation/z transformation und dann?
Status vor 29m 12. Tipsi
IntTheo/Flächenmaß berechnen
Status vor 1h 13m 3. Marie886
Algebra/Gleichung auflösen
Status vor 1h 41m 3. Teekanne3d
UAnaR1FolgReih/Potenzreihe
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]