matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenkonjugierte Werte, Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Matrices" - konjugierte Werte, Matrix
konjugierte Werte, Matrix < Matrices < Uni-LinA u. Algebra < University < Maths <
View: [ threaded ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ all forums  | ^ Tree of Forums  | materials

konjugierte Werte, Matrix: Tipp
Status: (Question) answered Status 
Date: 18:11 Mo 17/04/2017
Author: Franzi17

Aufgabe
Sei A =
[mm] \begin{pmatrix} a & b \\ \bar b & d \end{pmatrix} [/mm]  

[mm] \in [/mm] Mat2(C) mit a, d [mm] \in [/mm] R. Zeigen
Sie, dass alle Eigenwerte von A reell sind.


Hallo,
mir war die Notation mit [mm] \bar [/mm] b bisher neu,
habe ich das richtig verstanden, dass
b in der Form x + iy
x,y [mm] \in [/mm] C
vorliegt
und
[mm] \bar [/mm] b dann x - iy ist?

dann wäre A =
[mm] \begin{pmatrix} a & x + iy \\ x- iy & d \end{pmatrix} [/mm]  

und
[mm] PA(\Lambda) [/mm] = [mm] \lambda^2 [/mm] - [mm] ad*\Lambda [/mm] + ad - [mm] x^2 [/mm] - [mm] y^2 [/mm]

also
[mm] \Lambda_1 [/mm] = [mm] (ad+\wurzel{a^2d^2 + 4x^2 + 4y^2 - 4ad})/2 [/mm]
[mm] \Lambda_2 [/mm] = [mm] (ad-\wurzel{a^2d^2 + 4x^2 + 4y^2 - 4ad})/2 [/mm]

Und jetzt komme ich nicht mehr so recht weiter... Vielen Dank für euere Hilfe!

        
Bezug
konjugierte Werte, Matrix: Antwort
Status: (Answer) finished Status 
Date: 18:59 Mo 17/04/2017
Author: Gonozal_IX

Hiho,

A ist hermitisch und damit selbstadjungiert.
Betrachte nun einen Eigenwert [mm] $\lambda$ [/mm] und einen dazugehörigen Eigenvektor [mm] $x\not= [/mm] 0$ und forme mal mit der Eigenschaft der Selbstadjungiertheit und den Eigenschaften des Skalarprodukts so um, dass du eine Gleichung der Form

[mm] $\lambda [/mm] <x,x> = [mm] \ldots [/mm] = [mm] \overline{\lambda} [/mm] <x,x>$ erhälst.

Was folgt aus dieser Gleichung?

Gruß
Gono

Bezug
                
Bezug
konjugierte Werte, Matrix: Frage (beantwortet)
Status: (Question) answered Status 
Date: 17:38 Di 18/04/2017
Author: Franzi17

Hallo,
danke für deine Antwort!
Mein Problem ist, wir haben selbstadjungierte Matrizen noch nicht besprochen.
Ich habe es soweit verstanden, dass
A = [mm] A^H [/mm] ist
und dass diese Eigenschaft gilt:
<Ax,y> = [mm] (Ax)^H*y [/mm] = [mm] (x^H*A^H)*y [/mm] = [mm] x^H*(Ay) [/mm] = <x, Ay>
für alle x,y [mm] \in C^2 [/mm]

Sei [mm] \Lambda \in [/mm] C, Eigenwert von A, so existiert ein Eigenvektor x mit Ax = [mm] \Lambda*x, [/mm] x ungleich 0

Nun habe ich folgendes dazu gefunden:
[mm] \Lambda [/mm] = [mm] <\lambda*x, [/mm] x> = <Ax, x> = <x, Ax> = <x, [mm] \Lambda*x> [/mm] = [mm] \bar \Lambda* [/mm]

Und ich verstehe das leider nicht. Die Umformung anhand der obigen Eigenschaft schon, aber warum nimmt man das Skalarprodukt vom Eigenvektor auf diese Art und Weise?
Ich wäre sehr froh, um eine Erklärung.

Was aus [mm] \Lambda [/mm] = [mm] \bar \Lambda [/mm] folgt ist mir wieder klar.
[mm] \Lambda [/mm] = x + iy = [mm] \bar \Lambda [/mm] = x - iy
Daraus folgt: y = 0
also: [mm] \Lambda \in [/mm] R

Danke!


Bezug
                        
Bezug
konjugierte Werte, Matrix: Antwort
Status: (Answer) finished Status 
Date: 11:54 Mi 19/04/2017
Author: Gonozal_IX

Hiho,

>  Mein Problem ist, wir haben selbstadjungierte Matrizen noch nicht besprochen.

Dann ist der andere Weg wohl der bessere :-)

> Ich habe es soweit verstanden, dass
>  A = [mm]A^H[/mm] ist
> und dass diese Eigenschaft gilt:
>  <Ax,y> = [mm](Ax)^H*y[/mm] = [mm](x^H*A^H)*y[/mm] = [mm]x^H*(Ay)[/mm] = <x, Ay>

>  für alle x,y [mm]\in C^2[/mm]

[ok]
  

> Sei [mm]\Lambda \in[/mm] C, Eigenwert von A, so existiert ein
> Eigenvektor x mit Ax = [mm]\Lambda*x,[/mm] x ungleich 0

[ok]

> Nun habe ich folgendes dazu gefunden:
> [mm]\Lambda[/mm] = [mm]<\lambda*x,[/mm] x> = <Ax, x> = <x, Ax> = <x,
> [mm]\Lambda*x>[/mm] = [mm]\bar \Lambda*[/mm]

[ok]

> Und ich verstehe das leider nicht. Die Umformung anhand der
> obigen Eigenschaft schon, aber warum nimmt man das
> Skalarprodukt vom Eigenvektor auf diese Art und Weise?
> Ich wäre sehr froh, um eine Erklärung.

Also grundsätzlich ist das ja eine der vielen Fragen bei einem Beweis: "Wie kommt man drauf…"
Üben, üben, üben :-)

Letztendlich ist das bei Beweisen ja oft so, dass hingeschrieben sie sehr schön und einfach aussehen, aber drauf kommen ist das schwierige.
Hier könnte man bspw. das Pferd von hinten aufzäumen. Man will doch zeigen, dass [mm] $\lambda$ [/mm] reell ist, das ist es aber genau dann, wenn [mm] $\lambda [/mm] = [mm] \overline\lambda$… [/mm] nun überlegt man lange, in welchen Ausdrücken [mm] \lambda [/mm] und [mm] \overline\lambda [/mm] vorkommen… vielleicht aber auch $Ax$ und [mm] $\overline{A}x$ [/mm] weil ja [mm] $\lambda [/mm] x = A x$ gilt und analog für [mm] $\overline\lambda$ [/mm] und nach langem überlegen kommt man dann vielleicht auf $<x,Ax>$ bzw [mm] $
Aber das ist tatsächlich nichts, was man ungeübt mal eben sieht. Aber es wird einem doch ab und an mal wieder unterkommen. Insbesondere die Idee beide Seiten einer zu zeigenden Gleichung geeignet zu erweitern ist ja nichts ungewöhnliches, das macht man ja schon bei Brüchen oder binomischen Formeln.
Dieses mal ist es halt "nur" die Erweiterung mit $<x,x>$
Daher: Üben, üben, üben,

Gruß,
Gono

Bezug
        
Bezug
konjugierte Werte, Matrix: Antwort
Status: (Answer) finished Status 
Date: 22:57 Di 18/04/2017
Author: leduart

Hallo
du hast einen Fehler in deinem char- Polynom
$ [mm] \lambda^2 [/mm] $ - $ [mm] ad\cdot{}\Lambda [/mm] $ + ad - $ [mm] x^2 [/mm] $ - $ [mm] y^2 [/mm] $
richtig ist  $ [mm] \lambda^2 [/mm] $ - $ [mm] (a+d)\cdot{}\Lambda [/mm] $ + ad - $ [mm] x^2 [/mm] $ - $ [mm] y^2 [/mm] $
damit bekommst du ein reelles Ergebnis.
Gruß ledum

Bezug
                
Bezug
konjugierte Werte, Matrix: Mitteilung
Status: (Statement) No reaction required Status 
Date: 09:17 Mi 19/04/2017
Author: Franzi17

Danke! :)

Bezug
View: [ threaded ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 4h 19m 4. UniversellesObjekt
Logik/Intuitionistische Mathematik
Status vor 5h 08m 2. Gonozal_IX
UAnaR1FolgReih/Folge und 1-Norm
Status vor 7h 03m 5. mariella22
ULinASon/Orthogonaler Unterraum
Status vor 8h 55m 3. chrisno
SIntRech/Mehrfachintegral
Status vor 12h 08m 1. tobit09
MaßTheo/Sigma-Algebra gesucht
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]