matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblememaxima bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - maxima bestimmen
maxima bestimmen < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

maxima bestimmen: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:43 Mo 08.07.2013
Autor: Dkare91

Aufgabe
Für jedes [mm] n\in\IN [/mm] * ist eine Funktion fn gegeben durch
[mm] fn(x)=2cos(nx)-x^2+2+pi^2/4, x\in\IR [/mm]
Das Schaubild der Funktion fn ist Kn.

a) Skizzieren Sie K2 für [mm] x\in [/mm] [-3,2 ; 3,2]

b) In die Fläche aus Teil a) wird ein zur y-Achse symmetrisches Dreieck so einbeschrieben, dass ein Eckpunkt der Ursprung ist und die beiden anderen Eckpunkte auf K2 liegen.
Bestimmen Sie die Koordinaten der Eckpunkte so, dass der Flächeninhalt des Dreiecks maximal ist.

c) Bestimmen Sie die Gleichung einer zur y-Achse symmetrischen Parabel, die das Schaubild K2 an der Stelle x=pi berührt.

So und nun meine Frage, wie kann ich die c lösen?
Ich sitze schon seit einem Tag dran und komme einfach nicht weiter.
Die b konnte ich einfach lösen und habe die Punkte P1 (-1,57|4) und
P2 (1,57|4) für das Dreieck herausbekommen.
Aber an der c bleib ich hängen, da ich auch nicht gerade fit bin wenn es um Funktionen Bestimmung geht. Bin ich richtig wenn ich als Bedingungen die Steigung am Berührpunkt nehme und gleichzeitig den Punkt als Nullstelle nutze, da es ja x=pi ist?

Ich hoffe ihr könnt mir helfen

Gruß Daniel

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
maxima bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Mo 08.07.2013
Autor: MathePower

Hallo Dkare91,


[willkommenmr]


> Für jedes [mm]n\in\IN[/mm] * ist eine Funktion fn gegeben durch
>  [mm]fn(x)=2cos(nx)-x^2+2+pi^2/4, x\in\IR[/mm]
>  Das Schaubild der
> Funktion fn ist Kn.
>  
> a) Skizzieren Sie K2 für [mm]x\in[/mm] [-3,2 ; 3,2]
>  
> b) In die Fläche aus Teil a) wird ein zur y-Achse
> symmetrisches Dreieck so einbeschrieben, dass ein Eckpunkt
> der Ursprung ist und die beiden anderen Eckpunkte auf K2
> liegen.
>  Bestimmen Sie die Koordinaten der Eckpunkte so, dass der
> Flächeninhalt des Dreiecks maximal ist.
>  
> c) Bestimmen Sie die Gleichung einer zur y-Achse
> symmetrischen Parabel, die das Schaubild K2 an der Stelle
> x=pi berührt.
>  So und nun meine Frage, wie kann ich die c lösen?
> Ich sitze schon seit einem Tag dran und komme einfach nicht
> weiter.
>  Die b konnte ich einfach lösen und habe die Punkte P1
> (-1,57|4) und
> P2 (1,57|4) für das Dreieck herausbekommen.
>  Aber an der c bleib ich hängen, da ich auch nicht gerade
> fit bin wenn es um Funktionen Bestimmung geht. Bin ich
> richtig wenn ich als Bedingungen die Steigung am
> Berührpunkt nehme und gleichzeitig den Punkt als
> Nullstelle nutze, da es ja x=pi ist?

>


Ja, das ist richtig.

Nutze die Symmetrie der  Parabel zur y-Achse aus.
  

> Ich hoffe ihr könnt mir helfen
>  
> Gruß Daniel
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
maxima bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:30 Mo 08.07.2013
Autor: Dkare91

Ok, gut hab des soweit durchgeführt und bin auch zu einem Ergebnis gekommen, welches eigentlich richtig sein müsste :)
Danke für den Tipp :)

mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 8h 11m 2. fred97
SIntRech/Stammfunktion anschaulich
Status vor 11h 32m 10. sancho1980
ULinASon/Lineare Optimierung
Status vor 13h 35m 1. Rocky1994
UFina/Kapitalwertmethode
Status vor 19h 16m 5. Gonozal_IX
ULinASon/Lineare Abhängigkeit
Status vor 19h 45m 2. Gonozal_IX
UStoc/Markov Kette: Definitionen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]