matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitstetig hebbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - stetig hebbar
stetig hebbar < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetig hebbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Do 04.09.2014
Autor: geigenzaehler

Aufgabe
Für welche k aus IN ist f in x=0 stetig?

f: IR->IR

[mm] $f(x)=x^k*sin(1/x)$ [/mm] für [mm] $x\not=0$ [/mm]
f(x)=0 für x=0

ICh wollte das mit dem Folgenkriterium machen:

sei [mm] §x_{n}=1/n§ [/mm]

1/n -> 0

Die Frage ist also:

f(1/n) -> 0 für welche k?

[mm] (1/n)^k*sin(n)->0 [/mm]

Das muss doch jetzt unter dem Aspekt n-> unendlich betrachtet werden, oder?

Für alle k geht für n-> unendlich      [mm] (1/n)^k*sin(n) [/mm] -> 0 .

Kann man das so machen? Oder wie ist es besser?

        
Bezug
stetig hebbar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Do 04.09.2014
Autor: Diophant

Hallo,

> Für welche k aus IN ist f in x=0 stetig?

>

> f: IR->IR

>

> [mm]f(x)=x^k*sin(1/x)[/mm] für [mm]x\not=0[/mm]
> f(x)=0 für x=0
> ICh wollte das mit dem Folgenkriterium machen:

>

> sei [mm]§x_{n}=1/n§[/mm]

>

> 1/n -> 0

>

> Die Frage ist also:

>

> f(1/n) -> 0 für welche k?

>

> [mm](1/n)^k*sin(n)->0[/mm]

>

> Das muss doch jetzt unter dem Aspekt n-> unendlich
> betrachtet werden, oder?

>

> Für alle k geht für n-> unendlich [mm](1/n)^k*sin(n)[/mm] ->
> 0 .

>

> Kann man das so machen? Oder wie ist es besser?

sofern du mit alle k [mm] k\ge{1} [/mm] meinst (es ist hier nicht ganz klar, wofür [mm] \IN [/mm] steht), ist das richtig. Die Vorgehensweise ist die übliche würde ich sagen.


Gruß, Diophant

Bezug
                
Bezug
stetig hebbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Do 04.09.2014
Autor: geigenzaehler

gut, danke!

Bezug
        
Bezug
stetig hebbar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Do 04.09.2014
Autor: Marcel

Hallo,

> Für welche k aus IN ist f in x=0 stetig?
>  
> f: IR->IR
>  
> [mm]f(x)=x^k*sin(1/x)[/mm] für [mm]x\not=0[/mm]
>  f(x)=0 für x=0
>  ICh wollte das mit dem Folgenkriterium machen:
>  
> sei [mm]§x_{n}=1/n§[/mm]
>  
> 1/n -> 0
>  
> Die Frage ist also:
>  
> f(1/n) -> 0 für welche k?
>  
> [mm](1/n)^k*sin(n)->0[/mm]
>
> Das muss doch jetzt unter dem Aspekt n-> unendlich
> betrachtet werden, oder?
>  
> Für alle k geht für n-> unendlich      [mm](1/n)^k*sin(n)[/mm] ->
> 0 .
>  
> Kann man das so machen? Oder wie ist es besser?

das ist noch nicht ausreichend. Du zeigst so nur, dass in NOTWENDIGER
WEISE $k [mm] \ge [/mm] 1$ gelten muss, damit [mm] $f\,$ [/mm] (besser würde man [mm] $f_k$ [/mm] schreiben)
stetig in [mm] $0\,$ [/mm] ist.
(Du zeigst also: Ist [mm] $f\,$ [/mm] stetig in [mm] $0\,,$ [/mm] so folgt $k [mm] \ge 1\,.$) [/mm]
Nicht alles, was notwendig ist, muss aber auch hinreichend sein (und die
Frage ist hier doch eher: Wenn $k [mm] \ge \text{?}\,,$ [/mm] dann folgt, dass [mm] $f\,$ [/mm] stetig
in [mm] $0\,$ [/mm] ist. Wobei ich bei der Frage auch bemängeln muss, dass sie besser
formuliert werden sollte:
    "Für genau welche $k [mm] \in \IN$ [/mm] ist [mm] $f\,$ [/mm] stetig?"
Denn das ist eigentlich gemeint, und da wollen die natürlich auch Deine
Überlegung sehen, welche Bedingung an [mm] $k\,$ [/mm] notwendig ist...

Denn oben könnte ich durchaus auch einfach antworten: Bspw. für alle
$k [mm] \ge [/mm] 10000$ ist [mm] $f\,$ [/mm] stetig (an der Stelle [mm] $0\,$)...) [/mm]

Zeige noch: Ist $k [mm] \in \IN=\IN \setminus \{0\},$ [/mm] so folgt:
Ist [mm] $(y_n)_{n \in \IN}$ [/mm] IRGENDEINE Nullfolge, so folgt auch in der Tat

    [mm] $f(y_n) \to 0\,.$ [/mm]

Gruß,
  Marcel

Bezug
        
Bezug
stetig hebbar: Antwort
Status: (Antwort) fertig Status 
Datum: 08:09 Fr 05.09.2014
Autor: fred97

Für alle x [mm] \in \IR [/mm] und alle k [mm] \in \IN: [/mm]

$$|f(x)| [mm] \le |x|^k$$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 2h 47m 7. Schreim
USons/Quasireguläre Hexagone
Status vor 3h 29m 10. Tipsi
IntTheo/Flächenmaß berechnen
Status vor 4h 45m 2. matux MR Agent
Algebra/Dimension berechnen
Status vor 5h 23m 1. Franzi17
UAlgGRK/Gruppe, Ordnung p^2
Status vor 5h 28m 5. MRsense
SFolgen/Grenzwert einer Reihe
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]