matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisAnwendung Hahn-Banach
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - Anwendung Hahn-Banach
Anwendung Hahn-Banach < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendung Hahn-Banach: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:50 Sa 22.06.2013
Autor: physicus

Hallöchen

Ich habe eine Anwendung von Hahn-Banach, die ich nicht ganz verstehe. Zuerst ein wenig Notation. Sei [mm] $(E,\mathcal{E},\mu)$ [/mm] ein endlicher Massraum. Mit [mm] $L^0$ [/mm] bezeichne ich die Äquivalenzklasse von allen messbaren reellwertigen Funktionen [mm] $f:E\to\mathbb{R}$, [/mm] die [mm] $\mu$-f.s. [/mm] übereinstimmen. Man kann zeigen, dass dies ein Vektorraum ist.

Nun habe ich eine Abbildung [mm] $\phi:L^0\to \mathbb{R}$, [/mm] für die gilt: [mm] $\phi(f+c)=\phi(f)-c$ [/mm] wobei $c$ eine reelle Zahl ist, [mm] $\phi(f+g)\le \phi(f)+\phi(g)$, [/mm] für [mm] $f\ge [/mm] g$ haben wir [mm] $\phi(f)\le \phi(g)$ [/mm] und für [mm] $\lambda\ge [/mm] 0$ gilt [mm] $\phi(\lambda f)=\lambda\phi(f)$. [/mm] Ich definiere nun [mm] $\theta(Y):=\phi(-Y)$. [/mm] Es gilt  [mm] $\theta(1)=1$ [/mm] und [mm] $\theta(f)\le [/mm] 0 $ für [mm] $f\le [/mm] 0$. Wieso existiert dann ein lineares Funktional (nach Hahn-Banach) [mm] $F:L^0\to\mathbb{R}$ [/mm] mit [mm] $F(1)=\theta(1)=1$ [/mm] und [mm] $F(f)\le \theta(f)$ [/mm] für alle [mm] $f\in L^0$? [/mm]

Danke und Gruss

physicus

        
Bezug
Anwendung Hahn-Banach: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 So 07.07.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]