matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikDichtefunktion des ind. Maßes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Dichtefunktion des ind. Maßes
Dichtefunktion des ind. Maßes < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichtefunktion des ind. Maßes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 So 09.01.2011
Autor: Kyrill87

Aufgabe
Das Intervall [mm] \Omega [/mm] = [ [mm] 0,\infty [/mm] ) sei mit der Dichtefunktion [mm] \lambda e^{-\lambda x} [/mm] zu einem Wahrscheinlichkeitsraum gemacht worden (wobei [mm] \lambda [/mm] > 0).
Die Zufallsvariable X : [mm] \Omega \rightarrow \mathbb_{R} [/mm] sei durch x [mm] \mapsto x^{k} [/mm] definiert, dabei ist k > 0.

Gesucht ist die Dichtefunktion des induzierten Maßes [mm] P_{X}. [/mm]

Die Dichtefunktion haben wir ( denke ich ) wie folgt definiert gehabt:

[mm] h(x)=\integral_{\gamma}^{\delta}{h(x) dx}=\integral_{X^{-1}(\gamma)}^{X^{-1}(\delta)}{f(x) dx}, \forall [/mm] x [mm] \in [\gamma, \delta] [/mm]

f(x)= [mm] \lambda e^{-\lambda x} [/mm]

Jetzt kann ich h(x) = [mm] (F\circ X^{-1})' [/mm] setzen, mit F'=f

[mm] F(x)=-e^{-\lambda x} [/mm]
[mm] X^{-1}=\wurzel[k]{x} [/mm]

Um die Dichtefunktion h zu berechnen, werte ich dann folgendes Integral aus:
[mm] \integral_{\gamma}^{\delta}{h(x) dx}=\integral_{\gamma}^{\delta}{(F\circ X^{-1})' dx}=F\circ X^{-1}|_{\gamma}^{\delta}=-e^{-\lambda \wurzel[k]{x}}|_{\gamma}^{\delta} [/mm]

[mm] \gamma=0 [/mm] und [mm] \delta \rightarrow \infty [/mm] :
[mm] \limes_{r\rightarrow\infty} -e^{-\lambda \wurzel[k]{r}}- -e^{-\lambda \wurzel[k]{0}}=\limes_{r\rightarrow \infty} -e^{-\lambda \wurzel[k]{r}}+1=0+1 [/mm]


[mm] \Longrightarrow [/mm] h(x)=1 ist das richtig?

Vielen Dank für eure Zeit. :-)

        
Bezug
Dichtefunktion des ind. Maßes: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 So 09.01.2011
Autor: luis52

Moin,

vielleicht kannst du hier etwas Honig saugen.

vg Luis

Bezug
                
Bezug
Dichtefunktion des ind. Maßes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 Di 11.01.2011
Autor: Kyrill87

Den Thread hab ich mir durchgelesen, der beschäftigt sich aj aber nicht so viel mit dem induzierten Maß.

Ich wollte ja eigentlich nur wissen, ob ich das soweit richtig gemacht habe. Wobei ich vielleicht noch erwähnen sollte, dass h(x) die Dichtefunktion vom induzierten Maß ist.

Oder muss ich jetzt aufgrund des Hinweis

> vielleicht kannst du
> hier etwas Honig
> saugen.

davon ausgehen, dass ich was falsch gemacht habe?

LG Benny


Bezug
                        
Bezug
Dichtefunktion des ind. Maßes: Antwort
Status: (Antwort) fertig Status 
Datum: 08:52 Mi 12.01.2011
Autor: luis52

Moin,

ich ueberblicke das nicht so alles. Aber wenn deine Berechnung irgendetwas mit [mm] $\frac{\lambda x^{\frac{1}{k}-1} e^{-\lambda x^{\frac{1}{k}}}}{k}$ [/mm] erbringt, ist alles prima.

vg Luis      

Bezug
                                
Bezug
Dichtefunktion des ind. Maßes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:48 Do 27.01.2011
Autor: Kyrill87

Ja, war auch undurchsichtig, weil die eine Definition falsch war.
h(x) also die Dichetfunktion des induzierten Maß ist wie folgt definiert:

[mm] h(x):=(F\circ X^{-1})' [/mm]

hab das jetzt mal ausgerechnet und komm dann auch genau auf das was du geschrieben hast.

Vielen Dank.

Achso und das h(x) =1 ist war natürlich quatsch von mir, das war ja nur das Integral über die Dichtefunktion und das muss 1 sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]